Background: CCR1 is a chemokine receptor of significant importance in human health, yet little is known about its ligand-independent behavior. Results: CCR1 exhibits constitutive activity leading to basal signaling and -arrestin-mediated receptor internalization. Conclusion: Constitutive activity may enable CCR1 to engage in dual functions of canonical signaling and non-canonical chemokine scavenging. Significance: This may suggest a new function for CCR1 and avenue for drug development.
Fourteen subtype B and C protease variants have been engineered in an effort to study whether the preexistent baseline polymorphisms, by themselves or in combination with drug resistance mutations, differentially alter the biochemical and structural features of the subtype C protease when compared with those of subtype B protease. The kinetic studies performed in this work showed that the preexistent polymorphisms in subtype C protease, by themselves, do not provide for a greater level of resistance. Inhibition analysis with eight clinically used protease inhibitors revealed that the natural polymorphisms found in subtype C protease, in combination with drug resistance mutations, can influence enzymatic catalytic efficiency and inhibitor resistance. Structural analyses of the subtype C protease bound to nelfinavir and indinavir showed that these inhibitors form similar interactions with the residues in the active site of subtype B and C proteases. It also revealed that the naturally occurring polymorphisms could alter the position of the outer loops of the subtype C protease, especially the 60's loop.
The crystal structure of the unbound form of HIV-1 subtype A protease (PR) has been determined to 1.7 Å resolution and refined as a homodimer in the hexagonal space group P6 1 to an R cryst of 20.5%. The structure is similar in overall shape and fold to the previously determined subtype B, C and F PRs. The major differences lie in the conformation of the flap region. The flaps in the crystal structures of the unbound subtype B and C PRs, which were crystallized in tetragonal space groups, are either semi-open or wide open. In the present structure of subtype A PR the flaps are found in the closed position, a conformation that would be more anticipated in the structure of HIV protease complexed with an inhibitor. The amino-acid differences between the subtypes and their respective crystal space groups are discussed in terms of the differences in the flap conformations.
Along with other resonance energy transfer techniques, bioluminescence resonance energy transfer (BRET) has emerged as an important method for demonstrating protein–protein interactions in cells. In the field of G protein-coupled receptors, including chemokine receptors, BRET has been widely used to investigate homo- and heterodimerization, a feature of their interactions that is emerging as integral to function and regulation. While demonstrating the existence of dimers for a given receptor proved to be fairly straightforward, quantitative comparisons of different receptors or mutants are nontrivial because of inevitable variations in the expression of receptor constructs. The uncontrollable parameters of the cellular expression machinery make amounts of transfected DNA extremely poor predictors for the expression levels of BRET donor and acceptor receptor constructs, even in relative terms. In this chapter, we show that properly accounting for receptor expression levels is critical for quantitative interpretation of BRET data. We also provide a comprehensive account of expected responses in all types of BRET experiments and propose a framework for uniform and accurate quantitative treatment of these responses. The framework allows analysis of both homodimer and heterodimer BRET data. The important caveats and obstacles for quantitative treatment are outlined, and the utility of the approach is illustrated by its application to the homodimerization of wild-type (WT) and mutant forms of the chemokine receptor CXCR4.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.