The coronavirus, also known as COVID-19, has become highly contagious and has been associated with one of the world’s deadliest diseases. It also has direct effects on human lungs, causing significant damage. CT-scans are commonly employed in such circumstances to promptly evaluate, detect, and treat COVID-19 patients. Without any filtering, CT-scan images are more difficult to identify the damaged parts of the lungs and determine the severity of various diseases. In this paper, we use the multifractal theory to evaluate COVID-19 patient’s CT-scan images to analyze the complexity of the various patient’s original, filtered, and edge detected CT-scan images. To precisely characterize the severity of the disease, the original, noisy and denoised images are compared. Furthermore, the edge detection and filtered methods called Robert, Prewitt, and Sobel are applied to analyze the various patient’s COVID-19 CT-scan images and examined by the multifractal measure in the proposed technique. All of the images are converted, filtered and edge detected using Robert, Prewitt, and Sobel edge detection algorithms, and compared by the Generalized Fractal Dimensions are compared. For the CT-scan images of COVID-19 patients, the various Qualitative Measures are also computed exactly for the filtered and edge detected images by Robert, Prewitt, and Sobel schemes. It is observed that Sobel method is performed well for classifying the COIVD-19 patients’ CT-scans used in this research study, when compared to other algorithms. Since the image complexity of the Sobel method is very high for all the images and then more complexity of the images contains more clarity to confirm the COVID-19 images. Finally, the proposed method is supported by ANOVA test and box plots, and the same type of classification in experimental images is explored statistically.
The COVID-19 pandemic creates a worldwide threat to human health, medical practitioners, social structures, and finance sectors. The coronavirus epidemic has a significant impact on people's health, survival, employment, and financial crises; while also having noticeable harmful effects on our environment in a short span of time. In this context, the complexity of the Corona Virus transmission is estimated and analyzed by the measure of non-linearity called the Generalized Fractal Dimensions (GFD) on the chest X-Ray images. Grayscale image is considered as the most important suitable tool in the medical image processing. Particularly, COVID-19 affects the human lungs vigorously within a few days. It is a very challenging task to differentiate the COVID-19 infections from the various respiratory diseases represented in this study. The multifractal dimension measure is calculated for the original, noisy and denoised images to estimate the robustness of COVID-19 and other noticeable diseases. Also the comparison of COVID-19 X-Ray images is performed graphically with the images of healthy and other diseases to state the level of complexity of diseases in terms of GFD curves. In addition, the Mean Absolute Error (MAE) and the Peak Signal-to-Noise Ratio (PSNR) are used to evaluate the performance of the denoising process involved in the proposed comparative analysis of the representative grayscale images.
This paper explores the generalization of the fixed-point theorem for Fisher contraction on controlled metric space. The controlled metric space and Fisher contractions are playing a very crucial role in this research. The Fisher contraction on the controlled metric space is used in this paper to generate a new type of fractal set called controlled Fisher fractals (CF-Fractals) by constructing a system named the controlled Fisher iterated function system (CF-IFS). Furthermore, the interesting results and consequences of the controlled Fisher iterated function system and controlled Fisher fractals are demonstrated. In addition, the collage theorem on controlled Fisher fractals is established as well. The newly developing IFS and fractal set in the controlled metric space can provide the novel directions in the fractal theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.