A study on a parametrized model of a composite barrier FTJ (three-interface system, with a non-polar dielectric layer) under an external bias voltage and at room temperature, using FEM-based simulations, was performed. The approach involves the Thomas-Fermi model assuming incomplete screening of polarization charges for building the energy barrier profile, and numerically simulates the electron transport through the barrier by bias-voltage-dependent tunneling, using Tsu-Esaki formulation. That naturally include the temperature dependent contributions to the total current density. The TER coefficient and current densities are computed considering variation of a large set of parameters that describe the composite barrier FTJ system in realistic physical range of values with respect to a reference (prototypical) system. In this study, the parametric simulations were performed starting from selected data reported on the SRO/STO/BTO/SRO heterostructure. The most important results of our work can be stated as follows: i) The FEM simulations prove to be reliable approach when we are interested in the prediction of FTJ characteristics at temperatures close to 300 K, and ii) We show that several configurations with large TER values may be predicted, but at the expense of very low current densities in the ON state. We suggest that the results may be useful for assessing the FTJ performances at ambient temperature, as well as to design preoptimized FTJs by using different combinations of materials to comply with a set of properties of a specific model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.