This paper describes first results obtained from the SWIM (Surface Waves Investigation and Monitoring) instrument carried by CFOSAT (China France Oceanography Satellite), which was launched on October 29 th , 2018. SWIM is a Ku-Band radar with a near-nadir scanning beam geometry. It was designed to measure the spectral properties of surface ocean waves. First, the good behavior of the instrument is illustrated. It is then shown that the nadir products (significant wave height, normalized radar cross-section and wind speed) exhibit an accuracy similar to standard altimeter missions, thanks to a new retracking algorithm, which compensates a lower sampling rate compared to standard altimetry missions. The off-nadir beam observations are analyzed in details. The normalized radar cross-section varies with incidence and wind speed as expected from previous studies presented in the literature. We illustrate that, in order to retrieve the wave spectra from the radar backscattering fluctuations, it is crucial to apply a speckle correction derived from the observations. Directional spectra of ocean waves and their mean parameters are then compared to wave model data at the global scale and to in situ data from a selection of case studies. The good efficiency of SWIM to provide the spectral properties of ocean waves in the wavelength range [70m-500m] is illustrated. The main limitations are discussed, and the perspectives to improve data quality are presented. 1
This paper provides an overview of the SWIM (Surface Waves Investigation and Monitoring) instrument which will be one of the two payload instruments carried by CFOSAT (China France Oceanography SATellite) with a planned launch date in mid-2018. SWIM is a real aperture wave scatterometer operated at near-nadir incidence angles and dedicated to the measurement of directional spectra of ocean waves. The SWIM flight model is currently being assembled and tested, its performance is being assessed and its prototype data processing algorithm is being developed. The aim of this paper is to provide a complete overview on the motivations and scientific requirements of this mission, together with a description of the design and characteristics of the SWIM instrument, and the analysis of its expected performances based on a pre-launch study. An end-to-end simulator has been developed to evaluate the quality of the data products, thus allowing the overall performance of the instrument to be assessed. Simulations run with two subsets of full orbit subsets show that the performances of the instrument and the inversion algorithms will meet the scientific requirements for the mission.
Abstract. We propose a satellite mission that uses a near-nadir Ka-band Doppler radar to measure surface currents, ice drift and ocean waves at spatial scales of 40 km and more, with snapshots at least every day for latitudes 75 to 82°, and every few days for other latitudes. The use of incidence angles of 6 and 12° allows for measurement of the directional wave spectrum, which yields accurate corrections of the wave-induced bias in the current measurements. The instrument's design, an algorithm for current vector retrieval and the expected mission performance are presented here. The instrument proposed can reveal features of tropical ocean and marginal ice zone (MIZ) dynamics that are inaccessible to other measurement systems, and providing global monitoring of the ocean mesoscale that surpasses the capability of today's nadir altimeters. Measuring ocean wave properties has many applications, including examining wave–current interactions, air–sea fluxes, the transport and convergence of marine plastic debris and assessment of marine and coastal hazards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.