Male rat renal blood vessels undergo reduced contraction to norepinephrine with aging. There is a greater renal vascular impairment in male compared with female rats. We investigated specific tyrosine kinase receptor inhibition of renal interlobar artery responsiveness to phenylephrine in male and female rats at specifically designated ages. Vessels from young male rats contracted much less to phenylephrine when the vessels were pretreated with the tyrosine kinase inhibitors Lavendustin A, HNMPA-(AM)₃, or AG1478. Vessels from adult female rats pretreated with Lavendustin A showed no difference in contraction from control, but did demonstrate a slightly reduced contraction when pretreated with AG1478. Middle-aged male rat vessels treated with Lavendustin A demonstrated no inhibition, but the insulin and epidermal growth factor receptor (EGFR) antagonists both induced a decline in contraction. Vessels from aged male rats demonstrated no effect related to the 3 pretreatments. Middle-aged and aged female rats pretreated with any inhibitor demonstrated no inhibitor-dependent alterations. We conclude that maximum contraction of interlobar arteries from adult male rats is reduced when tyrosine kinase receptor activity is reduced. Female rats demonstrated much less inhibitor-related change of contraction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.