Conflicts of interest are part and parcel of living in a social group, yet actual conflict can be rare in established groups. Within limits, individuals can maximize the benefits of group living by resolving conflict with other group members. Thus, understanding what causes conflict, what determines its outcome, and how it is resolved holds the key to understanding the evolution and maintenance of sociality. Here, we investigate these questions using the clown anemonefish Amphiprion percula. Clownfish live in groups composed of a breeding pair and zero to four non-breeders that queue for breeding positions. Within groups, there is potential conflict over rank yet actual conflict is very rare. We staged contests in aquaria between pairs of nonbreeding individuals over access to a key resource (an anemone), analogous to contests that would occur at the onset of group formation in the wild. The initial size ratio between individuals tended to predict the intensity, and predicted the outcome and resolution of conflict: conflict intensity was greater when individuals were more similar in size; the probability of the smaller individual winning was greater when individuals were more similar in size; and the loser of the contest grew less than the winner when individuals were more similar in size. These results provide a critical test of foundational assumptions upon which our understanding of clownfish and other fish societies has been built. More generally, the results show that one of the simplest and most effective ways for animals to resolve conflict is to modify the phenotype that triggers conflict. causes conflict, what determines its outcome and how it is resolved holds the key to understanding the evolution and maintenance of sociality. Here, we investigate these questions using the clown anemonefish Amphiprion percula. Clownfish live in groups composed of a breeding pair and zero to four non-breeders that queue for breeding positions. Within groups, there is potential conflict over rank yet actual conflict is very rare. We staged contests in aquaria between pairs of non-breeding individuals over access to a key resource (an anemone), analogous to contests that would occur at the onset of group formation in the wild. The initial size ratio between individuals predicted the intensity, outcome and resolution of conflict: conflict intensity was greater when individuals were more similar in size; the probability of the smaller individual winning was greater when individuals were more similar in size; and the loser of the contest grew less than the winner when individuals were more similar in size. These results provide a critical test of foundational assumptions upon which our understanding of clownfish and other fish societies has been built. More generally, the results show that one of the simplest and most effective ways for animals to resolve conflict is to modify the phenotype that triggers conflict.
Using the social clown anemonefish Amphiprion ocellaris, whether individuals exhibited consistency in activity levels, boldness and sociability in a paired context, and whether these three behavioural traits were positively correlated within a single behavioural syndrome, was investigated. The results highlight that consistent individual differences in behaviour are expressed in a social fish and suggest that consistent behavioural traits and behavioural syndromes could influence the structure and functioning of their societies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.