The organization of nanoparticles into superstructures of predefined geometry is an important challenge in the area of nanoscale architecture. Attractive Coulombic interaction between positively charged amine groups on gold particle surfaces and negatively charged phosphate backbones of DNA molecules (see Figure) drives the self‐assembly of gold nanoparticles into linear supercluster structures.
The assembly of nanoparticles in topologically predefined superstructures is an important problem in the area of nanoscale architecture. In this letter, we demonstrate the electrostatic assembly of lysine-capped colloidal gold particles on drop-coated DNA films. Electrostatic interaction between the positive charges on the gold nanoparticles and the negative charges on the phosphate groups of the DNA template molecules leads to the assembly of the gold nanoparticles in linear superstructures. The use of DNA as templates for the assembly of nanoparticles shows promise for extension to more complex geometries through rational design of the DNA base sequences as well as in the realization of nanowires by stringing together metal nanoparticles.
In this report, we demonstrate the single-electron charging features of larger-sized (ca. 3.72 nm) Au nanoclusters protected with dodecanethiol [approximate composition, Au1415(RS)328] using combined electrochemical and scanning tunneling microscopic (STM) studies. In particular, these nanoclusters show a highly populated single-electron charging peak in voltammetric experiments, where the calculated capacitance is in good agreement with the experimentally obtained value of 1.6 aF. In comparison to the voltammetric studies, STM measurements over a single Au particle on the highly oriented pyrolytic graphite surface reveal nonlinear current-voltage (I-V) characteristics with a large central gap, signifying single-electron-transfer features. The I-V results demonstrate a clear Coulomb blockade effect with a central gap of around 0.2 eV, which is in good agreement with the orthodox theory for the double barrier tunnel junction system. The standard heterogeneous electron-transfer rate constant estimated from impedance measurements is found to be of 7.97 x 10(-6) cm.s(-1), suggesting that the process is very sluggish. Furthermore, diffusion coefficient (Dc) values calculated from chronoamperometry and impedance measurements are in good agreement with theoretically calculated values using the modified Stokes-Einstein equation. The electron-transfer rate constant estimated from cyclic voltammograms of adsorbed monolayer protected Au nanoclusters is found to be about 2 s(-1), which is slower than that reported for its smaller analogues.
In this article, the effect of interparticle interactions of 4.63 nm sized monolayer protected gold clusters (Au MPCs) during quantized double layer (QDL) charging has been investigated using electrochemical techniques. Voltammetry and scanning tunneling microscopy have been used to compare their electron transfer behavior. Furthermore, since the QDL process is diffusion controlled, the diffusion coefficient values have been estimated at various charge steps using two independent electroanalytical techniques, viz. chronoamperometry and impedance. These results show that higher core charge facilitates higher diffusion coefficient values, and indicate that repulsive interactions dominate for charged MPCs compared to those of its neutral analogue, which are mainly attractive in nature. Additionally, the electron transfer rate constants at various charge steps have been estimated from the impedance results, showing comparatively faster electron transfer rate at higher charge states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.