Insulin stimulated protein synthesis in gastrocnemius muscle of perfused rat hindlimb preparations by approximately twofold. The stimulation of protein synthesis was associated with a 12-fold increase in the amount of eukaryotic initiation factor eIF-4G bound to the mRNA cap-binding protein eIF-4E. In part, the increased binding of eIF-4G to eIF-4E was a result of release of eIF-4E bound to the translational regulator, PHAS-I, through a mechanism involving enhanced phosphorylation of PHAS-I. However, the insulin-induced association of eIF-4E and eIF-4G was not due to increased net phosphorylation of eIF-4E because insulin decreased the amount present in the phosphorylated form from 86 to 59% of total eIF-4E. Overall, the results suggest that insulin stimulates protein synthesis in gastrocnemius muscle through a mechanism involving increased binding of eIF-4G to eIF-4E, which is in part due to phosphorylation of PHAS-I, resulting in a release of eIF-4E from the inactive PHAS-I x eIF-4E complex.
Sepsis causes an inhibition of protein synthesis in gastrocnemius that is resistant to the anabolic effects of insulin. The purpose of the present studies was to investigate the effect of recombinant human insulin-like growth factor I (IGF-I) on protein synthesis during a 30-min perfusion of the isolated rat hindlimb from septic rats. Inclusion of IGF-I (1 or 10 nM) in the perfusate stimulated protein synthesis in gastrocnemius of septic rats 2.5-fold and restored rates of protein synthesis to those observed in control rats. The stimulation of protein synthesis did not result from an increase in the RNA content but was correlated with a 2.5-fold increase in the translational efficiency. The enhanced translational efficiency was accompanied by a 33 and 55% decrease in the abundance of free 40S and 60S ribosomal subunits, respectively, indicating that IGF-I accelerated peptide-chain initiation relative to elongation/termination. These studies provide evidence that IGF-I can accelerate protein synthesis in gastrocnemius during chronic sepsis by reversing the sepsis-induced inhibition of peptide-chain initiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.