A combinatorial assessment of composition‐microstructure‐magnetic property relationships in magnetic high entropy AlCoxCr1‐xFeNi alloy (0 ≤ x ≤ 1) system has been carried out using compositionally graded alloys fabricated via laser additive manufacturing. At one end, the AlCoFeNi composition (x = 1) consisted of equiaxed B2 grains, exhibiting very early stages of phase separation (only compositional partitioning) into Ni–Al rich and Fe–Co rich regions within grains of the B2 phase. At the other extreme, the AlCrFeNi composition (x = 0) exhibited grains with pronounced spinodal decomposition, resulting in a B2 + bcc microstructure with the degree of spinodal decomposition progressively increasing with Cr content in these AlCoxCr1–xFeNi alloys. While the saturation magnetization (Ms) monotonically increases six times from x = 0 to x = 1, the coercivity (Hc) variation is non‐monotonic, increasing seven times from x = 0 to x = 0.4, and subsequently decreasing fourteen times from x = 0.4 to x = 1.0. The magnetic phase transition temperature (Tc) for these alloys also increases monotonically with increasing Co content with a second phase transition exhibited in a certain range of compositions between x = 0.6 to x = 0.8. Such substantial changes in the magnetization behavior and properties of magnetic high entropy systems opens possibilities of tuning these alloys for specific soft or hard magnetic component applications.
A matrix of variably processed Fe-30at%Ni was deposited with variations in laser travel speeds as well and laser powers. A complete shift in phase stability occurred as a function of varying laser travel speed. At slow travel speeds, the microstructure was dominated by a columnar fcc phase. Intermediate travel speeds yielded a mixed microstructure comprised of both the columnar fcc and a martensite-like bcc phase. At the fastest travel speed, the microstructure was dominated by the bcc phase. This shift in phase stability subsequently affected the magnetic properties, specifically saturation magnetization. Ni-Fe-Mo and Ni-Fe-V permalloys were deposited from an elemental blend of powders as well. Both systems exhibited featureless microstructures dominated by an fcc phase. Magnetic measurements yielded saturation magnetizations on par with conventionally processed permalloys, however coercivities were significantly larger; this difference is attributed to microstructural defects that occur during the additive manufacturing process. Finally, a compositionally graded AlCoxCr1-xFeNi (0.0
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.