There is significant number of evidences suggesting the anti-inflammatory properties of gum resin extracts of Boswellia serrata containing 3-O-acetyl-11-keto-β-boswellic acid (AKBA) and their promising potential as therapeutic interventions against inflammatory diseases such as osteoarthritis (OA). Unfortunately, the poor bioavailability of AKBA following oral administration might limit the anti-inflammatory efficacy of standardized Boswellia extract(s). To address this issue, we describe a novel composition called Aflapin, which contains B. serrata extract enriched in AKBA and non-volatile oil portion of B. serrata gum resin. Our observations show that the availability of AKBA in systemic circulation of experimental animals is increased by 51.78% in Aflapin-supplemented animals, in comparison with that of 30% AKBA standardized extract or BE-30 (5-Loxin(®)). Consistently, Aflapin confers better anti-inflammatory efficacy in Freund's Complete Adjuvant (FCA)-induced inflammation model of Sprague-Dawley rats. Interestingly, in comparison with BE-30, Aflapin(®) also provides significantly better protection from IL-1β-induced death of human primary chondrocytes and improves glycosaminoglycans production in human chondrocytes. In Tumor necrosis factor alpha (TNFα)-induced human synovial cells, the inhibitory potential of Aflapin (IC(50) 44.736 ng/ml) on matrix metalloproteinase-3 (MMP-3) production is 14.83% better than that of BE-30 (IC(50) 52.528 ng/ml). In summary, our observations collectively suggest that both the Boswellia products, BE-30 (5-Loxin(®)) and Aflapin, exhibit powerful anti-inflammatory efficacy and anti-arthritic potential. In particular, in comparison with BE-30, Aflapin provides more potential benefits in recovering articular cartilage damage or protection from proteolytic degradation due to inflammatory insult in arthritis such as osteoarthritis or rheumatoid arthritis.
A new dimeric withanolide, ashwagandhanolide (1), was isolated from the roots of an Ayurvedic medicinal herb, Withania somnifera. A detailed spectroscopic evaluation revealed its identity as a dimer with an unusual thioether linkage. Compound 1 displayed growth inhibition against human gastric (AGS), breast (MCF-7), central nervous system (SF-268), colon (HCT-116), and lung (NCI H460) cancer cell lines, with IC50 values in the range 0.43-1.48 microg/mL. In addition, it inhibited lipid peroxidation and the activity of the enzyme cyclooxygenase-2 in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.