Abstract-We present a computer-aided detection (CAD) system for computed tomography colonography that orders the polyps according to clinical relevance. The CAD system consists of two steps: candidate detection and supervised classification. The characteristics of the detection step lead to specific choices for the classification system. The candidates are ordered by a linear logistic classifier (logistic regression) based on only three features: the protrusion of the colon wall, the mean internal intensity, and a feature to discard detections on the rectal enema tube. This classifier can cope with a small number of polyps available for training, a large imbalance between polyps and non-polyp candidates, a truncated feature space, unbalanced and unknown misclassification costs, and an exponential distribution with respect to candidate size in feature space. Our CAD system was evaluated with data sets from four different medical centers. For polyps larger than or equal to 6 mm we achieved sensitivities of respectively 95%, 85%, 85%, and 100% with 5, 4, 5, and 6 false positives per scan over 86, 48, 141, and 32 patients. A cross-center evaluation in which the system is trained and tested with data from different sources showed that the trained CAD system generalizes to data from different medical centers and with different patient preparations. This is essential to application in large-scale screening for colorectal polyps.
Abstract-Today's computer aided detection systems for computed tomography colonography (CTC) enable automated detection and segmentation of colorectal polyps. We present a paradigm shift by proposing a method that measures the amount of protrudedness of a candidate object in a scale adaptive fashion. One of the main results is that the performance of the candidate detection depends only on one parameter, the amount of protrusion. Additionally the method yields correct polyp segmentation without the need of an additional segmentation step. The supervised pattern recognition involves a clear distinction between size related features and features related to shape or intensity. A Mahalanobis transformation of the latter facilitates ranking of the objects using a logistic classifier. We evaluate two implementations of the method on 84 patients with a total of 57 polyps larger than or equal to 6 mm. We obtained a performance of 95% sensitivity at four false positives per scan for polyps larger than or equal to 6 mm.
Virtual colonoscopy is a relatively new method for the detection of colonic polyps. Their size, which is measured from reformatted CT images, mainly determines diagnosis. We present an automatic method for measuring the polyp size. The method is based on a robust segmentation method that grows a surface patch over the entire polyp surface starting from a seed. Projection of the patch points along the polyp axis yields a 2D point set to which we fit an ellipse. The long axis of the ellipse denotes the size of the polyp. We evaluate our method by comparing the automated size measurement with those of two radiologists using scans of a colon phantom. We give data for inter-observer and intra-observer variability of radiologists and our method as well as the accuracy and precision.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.