We report room temperature ferromagnetism in vacuum annealed ZnFe2O4 (ZFO) nanoparticles. Upon vacuum and air annealing, ZFO nanoparticles show ferro and paramagnetic behavior, respectively. The well defined sextets along with doublet seen in the Mossbauer spectra confirms ferromagnetic coupling in vacuum annealed ZFO. After reannealing in air, the magnetization of vacuum annealed sample reduces from 62 to 1.5 emu/g. Both Mossbauer and micro-Raman results suggest that oxygen vacancies generated during vacuum annealing causes cation redistribution between the interstitial sites resulting in magnetic ordering. Our results show a unique possibility of switching the magnetic properties of ZFO between paramagnetic to ferromagnetic.
Transparent conducting Li (0-5 wt%) doped NiO thin films with preferential growth along the (111) plane were deposited onto glass substrates by pyrolytic decomposition of nickel nitrate and lithium chloride precursors at 500 °C in air. The effect of Li concentration on the structural, optical and transport properties of NiO thin films was studied by x-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), spectral transmittance, photoluminescence and linear four-probe resistivity. Activation energies as a function of Li concentration were deduced from the temperature dependent resistivity data measured in the range 300-448 K. The figure of merit was deduced by combining the spectral transmittance and sheet resistance values. The variation in properties of NiO thin film due to Li doping are discussed based on the above results. A dye-sensitized solar cell has also been fabricated for the optimized Li doped NiO thin film and the results are presented.
Dielectric measurements and modulus analysis have been made to investigate the effects of grain size, frequency and temperature for nanostructured Mn–Zn ferrite. The anomalous frequency dependence of dielectric loss (tan δ) can be attributed to the resonance effect and also to the presence of both n- and p-type charge carriers. The tan δ for 59 and 69 nm grain size samples is found to be an order of magnitude smaller than those of bulk particles. Dielectric relaxation studies using modulus formalism have shown the presence of the non-Debye type of dielectric relaxation in these materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.