The aim of this prospective study was to evaluate outcome benefits expected in repeated implantation failure (RIF) patients (n = 217) after customized embryo transfer based upon identification of the receptivity window by transcriptomic approach using the Win-Test. In this test, the expression of 11 endometrial genes known to be predictive of endometrial receptivity is assessed by RT-PCR in biopsies collected during the implantation window (6-9 days after the spontaneous luteinizing hormone surge during natural cycles, 5-9 days after progesterone administration during hormone replacement therapy cycles). Then, patients underwent either customized embryo transfer (cET, n = 157 patients) according to the Win-Test results or embryo transfer according to the classical procedure (control group, n = 60). Pregnancy and live birth rates were compared in the two groups. The Win-Test showed that in 78.5% of women, the receptivity window lasted less than 48 h, although it could be shorter (< 24 h, 9.5%) or longer (> 48 h, 12%). This highlighted that only in 20% of patients with RIF the endometrium would have been receptive if the classical embryo transfer protocol was followed. In the other 80% of patients, the receptivity window was delayed by 1-3 days relative to the classical timing. This suggests that implantation failure could be linked to inadequate timing of embryo transfer. In agreement, both implantation (22.7% vs. 7.2%) and live birth rates per patient (31.8% vs. 8.3%) were significantly higher in the cET group than in the control group. cET on the basis of the Win-Test results could be proposed to improve pregnancy and live birth rates. ClinicalTrials.gov ID: NCT04192396; December 5, 2019, retrospectively registered.
Cell-free DNA (cfDNA) fragments, detected in blood and in other biological fluids, are released from apoptotic and/or necrotic cells. CfDNA is currently used as biomarker for the detection of many diseases such as some cancers and gynecological and obstetrics disorders. In this study, we investigated if cfDNA levels in follicular fluid (FF) samples from in vitro fertilization (IVF) patients, could be related to their ovarian reserve status, controlled ovarian stimulation (COS) protocols and IVF outcomes. Therefore, 117 FF samples were collected from women (n = 117) undergoing IVF/Intra-cytoplasmic sperm injection (ICSI) procedure and cfDNA concentration was quantified by ALU-quantitative PCR. We found that cfDNA level was significantly higher in FF samples from patients with ovarian reserve disorders (low functional ovarian reserve or polycystic ovary syndrome) than from patients with normal ovarian reserve (2.7 ± 2.7 ng/μl versus 1.7 ± 2.3 ng/μl, respectively, p = 0.03). Likewise, FF cfDNA levels were significant more elevated in women who received long ovarian stimulation (> 10 days) or high total dose of gonadotropins (≥ 3000 IU/l) than in women who received short stimulation duration (7–10 days) or total dose of gonadotropins < 3000 IU/l (2.4 ± 2.8 ng/μl versus 1.5 ± 1.9 ng/μl, p = 0.008; 2.2 ± 2.3 ng/μl versus 1.5 ± 2.1 ng/μl, p = 0.01, respectively). Finally, FF cfDNA level was an independent and significant predictive factor for pregnancy outcome (adjusted odds ratio = 0.69 [0.5; 0.96], p = 0.03). In multivariate analysis, the Receiving Operator Curve (ROC) analysis showed that the performance of FF cfDNA in predicting clinical pregnancy reached 0.73 [0.66–0.87] with 88% specificity and 60% sensitivity. CfDNA might constitute a promising biomarker of follicular micro-environment quality which could be used to predict IVF prognosis and to enhance female infertility management.
Birth weight (BW) is higher after frozen embryo transfer (FET) than after fresh embryo replacement. No study has compared the BW of siblings conceived using the same oocyte/embryo cohort. The aim of this study was to determine whether the freezing-thawing procedure is involved in such difference. Multicenter study at Montpellier University Hospital, Clinique Ovo, Canada and Grenoble-Alpes University Hospital. The first cohort (Fresh/FET) included in vitro fertilization (IVF) cycles where the older was born after fresh embryo transfer (n = 158) and the younger after transfer of frozen supernumerary embryos (n = 158). The second cohort (FET/FET) included IVF cycles where older and younger were born after FET of embryos from the same cohort. The mean adjusted BW of the FET group was higher than that of the fresh group (3508.9 ± 452.4 g vs 3237.7 ± 463.3 g; p < 0.01). In the FET/FET cohort, the mean adjusted BW was higher for the younger by 93.1 g but this difference is not significant (3430.2 ± 347.6 g vs 3337.1 ± 391.9 g; p = 0.3789). Our results strongly suggest that cryopreservation is directly involved in the BW variation. Comparing BW difference between Fresh/FET cohort and FET/FET one, it suggests that parity is not the only responsible, increasing the role of cryopreservation step in BW variation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.