BackgroundA multidisciplinary and multi-institutional working group applied the Failure Mode and Effects Analysis (FMEA) approach to assess the risks for patients undergoing Stereotactic Body Radiation Therapy (SBRT) treatments for lesions located in spine and liver in two CyberKnife® Centres.MethodsThe various sub-processes characterizing the SBRT treatment were identified to generate the process trees of both the treatment planning and delivery phases. This analysis drove to the identification and subsequent scoring of the potential failure modes, together with their causes and effects, using the risk probability number (RPN) scoring system. Novel solutions aimed to increase patient safety were accordingly considered.ResultsThe process-tree characterising the SBRT treatment planning stage was composed with a total of 48 sub-processes. Similarly, 42 sub-processes were identified in the stage of delivery to liver tumours and 30 in the stage of delivery to spine lesions. All the sub-processes were judged to be potentially prone to one or more failure modes. Nineteen failures (i.e. 5 in treatment planning stage, 5 in the delivery to liver lesions and 9 in the delivery to spine lesions) were considered of high concern in view of the high RPN and/or severity index value.ConclusionsThe analysis of the potential failures, their causes and effects allowed to improve the safety strategies already adopted in the clinical practice with additional measures for optimizing quality management workflow and increasing patient safety.
Dynamic jaw delivery on the TomoTherapy H‐series platform, entitled TomoEDGE™, is an effective tool to decrease the patient dose along the superior and inferior edges of the treatment target. The aperture of the TomoTherapy jaws, that is, field width (FW), defines the longitudinal dose profile. A consistent FW dose profile is an important quantity for accurate and reproducible dose delivery in TomoTherapy. To date, no evaluation has been made of the accuracy and precision of the dose profiles produced by dynamic jaws. This study aims to provide a long‐term evaluation of the dynamic jaw FW dose profiles obtained on TomoTherapy utilizing the TomoTherapy Quality Assurance procedure (TQA). A total of 840 dose profiles were measured during 84 TQA procedures, performed over a 2‐yr period. The full width at half maximum (FWHM) and constancy of the FW dose profile measurements were analyzed and compared with the tolerances proposed by AAPM Task Group 148 (TG‐148) and those used by the manufacturer. The FWHM evaluation showed that the FWs > 2.0 cm respect the TG‐148 tolerance of 1%, while the asymmetric FWs ≤ 2.0 cm were outside the limit in 17.3% of measurements. Constancy results evaluated along the full profiles showed that 95.2% of measurements were within 3% of the baseline for symmetric FWs and 94.8% of measurements were within 4% of the baseline for asymmetric FWs. In conclusion, the analysis confirms the accuracy and precision of TomoEDGE™ technology in jaw positioning. This study has identified the potential to establish an appropriate QA tolerance for the asymmetric FWs used in dynamic jaw movement. Finally, the clinical significance of the observed discrepancies should be studied further to understand the dosimetric effect on patient treatments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.