-This paper proposes a new approach of Field Programmable Gate Array (FPGA) controlled digital implementation of shunt active power filter (SAPF) under steady state and dynamic operations. Typical implementations of SAPF uses microprocessor and digital signal processor (DSP) but it limited for complex algorithm structure, absence of feedback loop delays and their cost can be exceed the benefit they bring. In this paper, the hardware resources of an FPGA are configured and implemented in order to overcome conventional microcontroller or digital signal processor implementations. This proposed FPGA digital implementation scheme has very less execution time and boosts the overall performance of the system. The FPGA controller integrates the entire control algorithm of an SAPF, including synchronous reference frame transformation, phase locked loop, low pass filter and inverter current controller etc. All these required algorithms are implemented with a single all-on chip FPGA module which provides freedom to reconfigure for any other applications. The entire algorithm is coded, processed and simulated using Xilinx 12.1 ISE suite to estimate the advantages of the proposed system. The coded algorithm is also defused on a single all-on-chip Xilinx Spartan 3A DSP-XC3SD1800 laboratory prototype and experimental results thus obtained match with simulated counterparts under the dynamic state and steady state operating conditions.
A method to both reduce energy and improve performance in a processor-based embedded system is described in this paper. Efficient utilization of on-chip memory space is extremely important in modern embedded system applications based on microprocessor cores. In addition to a data cache that interfaces with slower off-chip memory, a fast on-chip SRAM, called Scratch-Pad memory, is often used in several applications.Comprising of a scratch pad memory instead of an instruction cache, the target system dynamically (at runtime) copies into the scratch pad code segments that are determined to be beneficial (in terms of energy efficiency and/or speed) to execute from the scratch pad. A hardware controller is designed and implemented for managing the scratch pad memory. Strategically placed custom instructions in the program inform the hardware controller when to copy instructions from the main memory to the scratchpad. A novel heuristic algorithm is implemented for determining locations within the program where to insert these custom instructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.