Abstract. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) in the atmosphere is a novel measurement technique that represents a significant advance on the well-established zenith scattered sunlight DOAS instruments which are mainly sensitive to stratospheric absorbers. MAX-DOAS utilizes scattered sunlight received from multiple viewing directions. The spatial distribution of various trace gases close to the instrument can be derived by combining several viewing directions. Ground based MAX-DOAS is highly sensitive to absorbers in the lowest few kilometres of the atmosphere and vertical profile information can be retrieved by combining the measurements with Radiative Transfer Model (RTM) calculations. The potential of the technique for a wide variety of studies of tropospheric trace species and its (few) limitations are discussed. A Monte Carlo RTM is applied to calculate Airmass Factors (AMF) for the various viewing geometries of MAX-DOAS. Airmass Factors can be used to quantify the light path length within the absorber layers. The airmass factor dependencies on the viewing direction and the influence of several parameters (trace gas profile, ground albedo, aerosol profile and type, solar zenith and azimuth angles) are investigated. In addition we give a brief description of the instrumental MAX-DOAS systems realised and deployed so far. The results of the RTM studies are compared to several examples of recent MAX-DOAS field experiments and an outlook for future possible applications is given.
[1] Multi AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations of the oxygen dimer O 4 which can serve as a new method for the determination of atmospheric aerosol properties are presented. Like established methods, e.g., Sun radiometer and LIDAR measurements, MAX-DOAS O 4 observations determine optical properties of aerosol under atmospheric conditions (not dried). However, the novel technique has two major advantages: It utilizes differential O 4 absorption structures and thus does not require absolute radiometric calibration. In addition, O 4 observations using this method provide a new kind of information: since the atmospheric O 4 profile depends strongly on altitude, they can yield information on the atmospheric light path distribution and in particular on the atmospheric aerosol profile. From O 4 observations during clear days and from atmospheric radiative transfer modeling, we conclude that our new method is especially sensitive to the aerosol extinction close to the ground. In addition, O 4 observations using this method yield information on the penetration depth of the incident direct solar radiation. O 4 observations at different azimuth angles can also provide information on the aerosol scattering phase function. We found that MAX-DOAS O 4 observations are a very sensitive method: even aerosol extinction below 0.001 could be detected. In addition to the O 4 absorptions we also investigated the magnitude of the Ring effect and the (relative) intensity. Both quantities yield valuable further information on atmospheric aerosols. From the simultaneous analysis of the observed O 4 absorption and the measured intensity, in particular, information on the absorbing properties of the aerosols might be derived. The aerosol information derived from MAX-DOAS observations can be used for the quantitative analysis of various trace gases also analyzed from the measured spectra.
Abstract. Multi Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) is a novel measurement technique that represents a significant advance on the well-established zenith scattered sunlight DOAS instruments which are mainly sensitive to stratospheric absorbers. MAX-DOAS utilizes scattered sunlight received from multiple viewing directions. The spatial distribution of various trace gases close to the instrument can be derived by combining several viewing directions. Ground based MAX-DOAS is highly sensitive to absorbers in the lowest few kilometres of the atmosphere and vertical profile information can be retrieved by combining the measurements with Radiative Transfer Model (RTM) calculations. The potential of the technique for a wide variety of studies of tropospheric trace species and its (few) limitations are discussed. A Monte Carlo RTM is applied to calculate Airmass Factors (AMF) for the various viewing geometries of MAX-DOAS. Airmass Factors can be used to quantify the light path length within the absorber layers. The airmass factor dependencies on the viewing direction and the influence of several parameters (trace gas profile, ground albedo, aerosol profile and type, solar zenith and azimuth angles) are investigated. In addition we give a brief description of the instrumental MAX-DOAS systems realised and deployed so far. The results of the RTM studies are compared to several examples of recent MAX-DOAS field experiments and an outlook for future possible applications is given.
Abstract. The results of a comparison exercise of radiative transfer models (RTM) of various international research groups for Multiple AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) viewing geometry are presented. Besides the assessment of the agreement between the different models, a second focus of the comparison was the systematic investigation of the sensitivity of the MAX-DOAS technique under various viewing geometries and aerosol conditions. In contrast to previous comparison exercises, box-air-mass-factors (box-AMFs) for different atmospheric height layers were modelled, which describe the sensitivity of the measurements as a function of altitude. In addition, radiances were calculated allowing the identification of potential errors, which might be overlooked if only AMFs are compared. Accurate modelling of radiances is also a prerequisite for the correct interpretation of satellite observations, for which the received radiance can strongly vary across the large ground pixels, and might be also important for the retrieval of aerosol properties as a future applicationCorrespondence to: T. Wagner (thomas.wagner@iup.uni-heidelberg.de) of MAX-DOAS. The comparison exercises included different wavelengths and atmospheric scenarios (with and without aerosols). The strong and systematic influence of aerosol scattering indicates that from MAX-DOAS observations also information on atmospheric aerosols can be retrieved. During the various iterations of the exercises, the results from all models showed a substantial convergence, and the final data sets agreed for most cases within about 5%. Larger deviations were found for cases with low atmospheric optical depth, for which the photon path lengths along the line of sight of the instrument can become very large. The differences occurred between models including full spherical geometry and those using only plane parallel approximation indicating that the correct treatment of the Earth's sphericity becomes indispensable. The modelled box-AMFs constitute an universal data base for the calculation of arbitrary (total) AMFs by simple convolution with a given trace gas concentration profile. Together with the modelled radiances and the specified settings for the various exercises, they can serve as test cases for future RTM developments.Published by Copernicus GmbH on behalf of the European Geosciences Union.
[1] Atmospheric observations of the O 4 absorption bands at 360.5, 380.2, 477.3, 532.2, 577.2 and 630.0 nm are presented for different atmospheric conditions (clear and cloudy skies) and viewing geometries (direct and zenith-scattered light observations). From the observations of direct moonlight it was possible to derive absolute O 4 absorption cross sections for atmospheric conditions. We found that the relative shape of the observed absorption bands is similar to those of the O 4 spectrum measured by Greenblatt et al. [1990] in the laboratory. However, in general (except for the absorption band at 380.2 nm), the O 4 absorption cross sections derived in this study are larger by several percent compared to those of the other (mainly laboratory) observations. Using the observations of zenith-scattered light, we investigated the radiative transport through the atmosphere. Our observations under cloudy sky conditions confirmed that the light path enhancement due to multiple Mie scattering on cloud droplets is independent of wavelength. From the observations under clear-sky conditions we studied the influence of Mie scattering on aerosol. It was not possible to describe the selected clear-sky measurements by taking into account only Rayleigh scattering. We found that the comparison of the O 4 measurements with model results for different sets of assumed aerosol extinctions provides a new, very sensitive tool to derive aerosol parameters from zenith sky ground-based measurements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.