The low Btu gas (LBG) combined gas and steam turbine power cycle is a potentially attractive alternative to the direct coal fired steam cycle because of the potential for low sulfur emissions and high overall cycle efficiency. However, LBG may contain ammonia (NH3) which could be converted to nitrogen oxides (NOx) under typical combustion conditions. This paper examines the effects of LBG composition and combustor design on NOx emissions. Low Btu gases of varying compositions were synthesized from bottled gases and fired in three atmospheric pressure flame reactors: diffusion flame reactor, flat flame reactor and catalytic reactor. Nitrogen oxide emissions were found to be most sensitive to the concentrations of NH3 and hydrocarbon fuel gas in the synthetic LBG. Lowest NOx emissions were produced by the diffusion flame reactor operating at near stoichiometric conditions and the catalytic reactor operating fuel rich.
The high efficiencies obtained in a combined gas-turbine/steam-turbine power cycle burning low Btu gas (LBG) make it a potentially attractive alternative to the high sulfur emitting direct coal-fired steam cycle. In the gasification process, much of the bound nitrogen in coal is converted to ammonia in the LBG. This ammonia is largely converted to nitrogen oxides (NOx) in conventional combustors. This paper examines the pressurized bench scale performance of reactors previously demonstrated to produce low NOx emissions in atmospheric laboratory scale experiments. LBG was synthesized in a catalytic reformer and fired in three reactors: a catalytic reactor, a diffusion flame, and a stirred reactor. Effects of scale, pressure, stoichiometry, residence time, and preheat were examined. Lowest NOx emissions were produced in a rich/lean series staged catalytic reactor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.