Following the successful development of a multiple-drive electrical impedance tomography system OXPACT-II featuring a voltage-driven current method for in vitro studies, research work currently being undertaken at the EIT research group in Oxford is aimed at developing a real-time multiple-drive adaptive system, called the Oxford Brookes Adaptive Current Tomograph Mark-III (OXBACT-III) which will operate at several frequencies in between 10-160 kHz. The objective of this system development is to enable EIT clinical studies to be undertaken based on the adaptive current method. One of the most important issues addressed in the new system design is to achieve high data acquisition speed while maintaining sufficient system accuracy. This paper will describe the overall data acquisition system structure and relevant system performance specifications.
A high output impedance current source was required for electrical impedance tomography (EIT) applications capable of operating up to 200 kHz. The architecture is based on operational-amplifier power-supply current sensing and produces a predominantly capacitive output impedance, which for the design presented is approximately 1.2 pF.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.