An N-doped, p-type ZnO layer has been grown by molecular beam epitaxy on an Li-diffused, bulk, semi-insulating ZnO substrate. Hall-effect and conductivity measurements on the layer give: resistivity=4×101 Ω cm; hole mobility=2 cm2/V s; and hole concentration=9×1016 cm−3. Photoluminescence measurements in this N-doped layer show a much stronger peak near 3.32 eV (probably due to neutral acceptor bound excitons), than at 3.36 eV (neutral donor bound excitons), whereas the opposite is true in undoped ZnO. Calibrated, secondary-ion mass spectroscopy measurements show an N surface concentration of about 1019 cm−3 in the N-doped sample, but only about 1017 cm−3 in the undoped sample.
The emission and reflection spectra of ZnO have been investigated in the intrinsic region and the data have been interpreted in terms of the wurtzite crystal band structure. Free-exciton emission is observed for the first time. Both the ⌫ 5 and ⌫ 6 state excitons associated with top valence band have been identified. This identification has established the valence-band symmetry ordering in ZnO.
Neutral-donor-bound-exciton transitions have been observed in ZnO. The isolated neutral donors are made up of defect pair complexes. The neutral-donor nature of these pair complexes was determined from magneticfield measurements and from two-electron transitions. Excited states of the neutral-donor bound excitons were observed in the form of rotator states analogous to rotational states of the H 2 molecule.
A conversion from ohmic to rectifying behavior is observed for Au contacts on atomically ordered polar ZnO surfaces following remote, room-temperature oxygen plasma treatment. This transition is accompanied by reduction of the “green” deep level cathodoluminescence emission, suppression of the hydrogen donor-bound exciton photoluminescence and a ∼0.75eV increase in n-type band bending observed via x-ray photoemission. These results demonstrate that the contact type conversion involves more than one mechanism, specifically, removal of the adsorbate-induced accumulation layer plus lowered tunneling due to reduction of near-surface donor density and defect-assisted hopping transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.