Introduction: Sensorineural hearing loss is associated with many complications and needs timely detection and diagnosis. Objectives: Optimize the sensorineural hearing loss detection system to improve the accuracies of image detection. Method: The stationary wavelet entropy was used to extract the features of NMR images, the single hidden layer neural network was used for classification, and the BBO algorithm was used for optimization to avoid the dilemma of local optimum. We used two-level SWE as input to the classifier to enhance the identify and classify ability of hearing loss. Results: The results of 10-fold cross validation show that the accuracies of HC, LHL and RHL are 91.83± 3.09%, 92.67±2.38% and 91.17±2.61%, respectively. The overall accuracy is 91.89±0.70%. Conclusion: This model has good performance in detecting hearing loss.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.