Aerobic glycolysis has been shown to contribute to the abnormal activation of lung fibroblasts with excessive collagen deposition in lipopolysaccharide (LPS)-induced pulmonary fibrosis. Targeting aerobic glycolysis in lung fibroblasts might therefore be considered as a promising therapeutic approach for LPS-induced pulmonary fibrosis. In the present study, the aim was to investigate whether metformin, a widely used agent for treating type 2 diabetes, could alleviate LPS-induced lung fibroblast collagen synthesis and its potential underlying mechanisms. Different concentrations of metformin were used to treat the human lung fibroblast MRC-5 cells after LPS challenge. Indicators of aerobic glycolysis in MRC-5 cells were detected by measuring glucose consumption and lactate levels in culture medium in addition to lactate dehydrogenase activity in cellular lysates. The glucose consumption, lactate levels and the lactate dehydrogenase activity were measured respectively using colorimetric/fluorometric and ELISA kits. The effects of metformin in AMP-activated protein kinase (AMPK) activation was assessed by mitochondrial complex I activity kits. Collagen I, α-smooth muscle actin (α-SMA) and collagen III were used as markers of collagen synthesis, which was measured using western blotting, whereas phosphorylated (p-) AMPK, AMPK, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and mTOR were detected by western blotting. Metformin significantly decreased mitochondrial complex I activity and upregulated the expression of p-AMPK/AMPK protein in a concentration-dependent manner. Furthermore, the aerobic glycolysis mediated by PFKFB3 and collagen synthesis in LPS-treated MRC-5 cells was gradually inhibited with increasing concentrations of metformin. However, this inhibitory role of metformin on PFKFB3-meditaed aerobic glycolysis and collagen synthesis was prevented by treatments with 3BDO and compound C, which are specific mTOR activator and AMPK inhibitor, respectively. Taken together, the findings from this study suggested that metformin may prevent PFKFB3-associated aerobic glycolysis from enhancing collagen synthesis in lung fibroblasts via regulating the AMPK/mTOR pathway.
Octreotide is a synthetic octapeptide of natural somatostatin. We aimed to investigate the influence of Octreotide on lipopolysaccharide (LPS)-stimulated human pulmonary epithelial cell damage. After stimulated by LPS, BEAS-2B cells were treated with various concentrations of Octreotide. CCK-8 assay and LDH kits were to evaluate cell cytotoxicity. ELISA kits were to analyze the levels of inflammatory factors. TUNEL staining was to measure cell apoptosis. Western blot assay was used to assess the expression of apoptosis-related proteins, autophagy-related proteins and AKT/mTOR signaling-related proteins. Then, 3-methyladenine (3-MA) was adopted for treating BEAS-2B cells to determine its effects on inflammation and apoptosis. Afterward, adding AKT agonist (SC79) or mTOR antagonist (rapamycin) to explore the impact of Octreotide on autophagy. Results revealed that Octreotide notably enhanced cell viability and reduced LDH activity. The levels of inflammatory factors were significantly decreased following Octreotide treatment. Additionally, Octreotide attenuated the apoptotic capacity of LPS-induced BEAS-2B cells, led to the up-regulation of Bcl-2 protein level while cut down the protein levels of Bax and cleaved caspase3. Remarkably, the expression of autophagy-related protein LC3II/I and Beclin1 was elevated after Octreotide administration. Importantly, the suppressive effects of Octreotide on the inflammation and apoptosis of LPS-induced BEAS-2B cells was abrogated by 3-MA. Further experiments suggested that Octreotide downregulated p-AKT and mTOR expression in LPS-stimulated BEAS-2B cells. SC79 addition inhibited autophagy, evidenced by downregulated LC3II/I and Beclin1 expression while rapamycin presented the opposite effects. To conclude, Octreotide activates autophagy to alleviate LPS-induced pulmonary epithelial cell injury by inhibiting the AKT/mTOR signaling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.