Katanin p60 subunit A-like 1 (KATNAL1) is an ATPase that regulates Sertoli cell microtubule dynamics and sperm retention. We evaluated one novel splice variant and characterized the promoter and a functional single nucleotide polymorphism (SNP) of the bovine KATNAL1 gene to explore its expression pattern, possible regulatory mechanism and relationship with semen traits in Chinese Holstein bulls. A novel splice variant, KATNAL1 transcript variant 2 (KATNAL1-TV2) of the retained 68 bp in intron 2, was identified by RT-PCR and compared with KATNAL1 transcript variant 1 (KATNAL1-TV1, NM 001192918.1) in various tissues. Bioinformatics analyses predicted that KATNAL1 transcription was regulated by two promoters: P1 in KATNAL1-TV1 and P2 in KATNAL1-TV2. Results of qRT-PCR revealed that KATNAL1-TV1 had higher expression than did KATNAL1-TV2 in testes of adult bulls (P < 0.05). Promoter luciferase activity analysis suggested that the core sequences of P1 and P2 were mapped to the region of c.-575˜c.-180 and c.163-40˜c.333+59 respectively. One novel SNP (c.163-210T>C, ss836312085) located in intron 1 was found using sequence alignment. The SNP in P2 resulted in the presence of the DeltaE binding site, improving its basal promoter activity (P < 0.05); and we observed a greater sperm deformity rate in bulls with the genotype CC than in those with the genotype TT (P < 0.05), which indicated that different genotypes were associated with the bovine semen traits. Bioinformatics analysis of the KATNAL1 protein sequence predicted that the loss of the MIT domain in the KATNAL1-TV2 transcript resulted in protein dysfunction. These findings help us to understand that a functional SNP in P2 and subsequent triggering of expression diversity of KATNAL1 transcripts are likely to play an important role with regard to semen traits in bull breeding programs.
Transcriptional regulation is a complex process that is controlled by a variety of factors, including enhancers and silencers. Silencers, also known as repressor elements, play a crucial role in the fine-tuning of gene expression by inhibiting or suppressing transcription in the human genome. Although significant progresses have been made, genome-wide silencer research is still in its early stages. Here, we used a genome-wide method called massively parallel reporter assays (MPRAs) to identify silencers in three human cell lines: K562, LNCap, and HEK293T. We identified 739,434, 643,484, and 491,952 silencer regions in these cell lines, respectively. We found that most of the silencers we identified had inhibitory activity and significantly enriched inhibitory motifs. These results confirm that silencers are ubiquitous in the human genome and play an important role in regulating gene expression. Therefore, our study provides a general strategy for genome-wide functional identification of silencer elements. This information could be used to better understand the mechanisms of gene regulation and to develop new therapeutic strategies for diseases that are caused by dysregulation of gene expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.