Chorus waves play a key role in outer Van Allen electron belt dynamics through cyclotron resonance. Here, we use Van Allen Probes data to reveal a new and distinct population of intense chorus waves excited in the heart of the radiation belt during the main phase of geomagnetic storms. The power of the waves is typically ~ 2–3 orders of magnitude greater than pre-storm levels, and are generated when fluxes of ~ 10–100 keV electrons approach or exceed the Kennel–Petschek limit. These intense chorus waves rapidly scatter electrons into the loss cone, capping the electron flux to a value close to the limit predicted by Kennel and Petschek over 50 years ago. Our results are crucial for understanding the limits to radiation belt fluxes, with accurate models likely requiring the inclusion of this chorus wave-driven flux-limiting process, that is independent of the acceleration mechanism or source responsible for enhancing the flux.
Kinetic wave-particle interactions in Earth’s outer radiation belt energize and scatter high-energy electrons, playing an important role in the dynamic variation of the extent and intensity of the outer belt. It is possible to model the effects of wave-particle interactions across long length and time scales using quasi-linear theory, leading to a Fokker-Planck equation to describe the effects of the waves on the high energy electrons. This powerful theory renders the efficacy of the wave-particle interaction in a diffusion coefficient that varies with energy or momentum and pitch angle. In this article we determine how the Fokker-Planck equation responds to the temporal variation of the quasi-linear diffusion coefficient in the case of pitch-angle diffusion due to plasmaspheric hiss. Guided by in-situ observations of how hiss wave activity and local number density change in time, we use stochastic parameterisation to describe the temporal evolution of hiss diffusion coefficients in ensemble numerical experiments. These experiments are informed by observations from three different example locations in near-Earth space, and a comparison of the results indicates that local differences in the distribution of diffusion coefficients can result in material differences to the ensemble solutions. We demonstrate that ensemble solutions of the Fokker-Planck equation depend both upon the timescale of variability (varied between minutes and hours), and the shape of the distribution of diffusion coefficients. Based upon theoretical construction of the diffusion coefficients and the results presented here, we argue that there is a useful maximum averaging timescale that should be used to construct a diffusion coefficient from observations, and that this timescale is likely less than the orbital period of most inner magnetospheric missions. We discuss time and length scales of wave-particle interactions relative to the drift velocity of high-energy electrons and confirm that arithmetic drift-averaging is can be appropriate in some cases. We show that in some locations, rare but large values of the diffusion coefficient occur during periods of relatively low number density. Ensemble solutions are sensitive to the presence of these rare values, supporting the need for accurate cold plasma density models in radiation belt descriptions.
Chorus waves play a key role in outer Van Allen electron belt dynamics through cyclotron resonance. Here, we use Van Allen Probes data to reveal a new and distinct population of intense chorus waves excited in the heart of the radiation belt during the main phase of geomagnetic storms. The power of the waves is typically ∼2-3 orders of magnitude greater than pre-storm levels, and are generated when fluxes of ∼10-100 keV electrons approach or exceed the Kennel-Petschek limit. These intense chorus waves rapidly scatter electrons into the loss cone, capping the electron flux to a value close to the limit predicted by Kennel and Petschek over 50 years ago. Our results are crucial for understanding the limits to radiation belt fluxes, with accurate models likely requiring the inclusion of this chorus wave-driven flux-limiting process, that is independent of the acceleration mechanism or source responsible for enhancing the flux.
<p>The electron population inside Earth&#8217;s outer radiation belt is highly variable and typically linked to geomagnetic activity such as storms and substorms. These variations can differ with radial distance, such that the fluxes at the outer boundary are different from those in the heart of the belt. Using data from the Proton Electron Telescope (PET) on board NASA&#8217;s Solar Anomalous Magnetospheric Particle Explorer (SAMPEX), we have examined the correlation between electron fluxes at all L's within the radiation belts for a range of geomagnetic conditions, as well as longer-term averages. Our analysis shows that fluxes at L&#8776;2-4 and L&#8776;4-10 are well correlated within these regions, with coefficients in excess of 80%, however, the correlation between these two regions is low. These correlations vary between storm-times and quiet-times. We examine whether, and to what extent this correlation is related to the level of enhancement of the outer radiation belt during geomagnetic storms, and whether the plasmapause plays any role defining the different regions of correlated flux.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.