Context. As part of our international program aimed at obtaining accurate physical properties of trans-Neptunian objects (TNOs), we predicted a stellar occultation by the TNO (38628) Huya of the star Gaia DR2 4352760586390566400 (mG = 11.5 mag) on March 18, 2019. After an extensive observational campaign geared at obtaining the astrometric data, we updated the prediction and found it favorable to central Europe. Therefore, we mobilized half a hundred of professional and amateur astronomers in this region and the occultation was finally detected by 21 telescopes located at 18 sites in Europe and Asia. This places the Huya event among the best ever observed stellar occultation by a TNO in terms of the number of chords. Aims. The aim of our work is to determine an accurate size, shape, and geometric albedo for the TNO (38628) Huya by using the observations obtained from a multi-chord stellar occultation. We also aim to provide constraints on the density and other internal properties of this TNO. Methods. The 21 positive detections of the occultation by Huya allowed us to obtain well-separated chords which permitted us to fit an ellipse for the limb of the body at the moment of the occultation (i.e., the instantaneous limb) with kilometric accuracy. Results. The projected semi-major and minor axes of the best ellipse fit obtained using the occultation data are (a′, b′) = (217.6 ± 3.5 km, 194.1 ± 6.1 km) with a position angle for the minor axis of P′ = 55.2° ± 9.1. From this fit, the projected area-equivalent diameter is 411.0 ± 7.3 km. This diameter is compatible with the equivalent diameter for Huya obtained from radiometric techniques (D = 406 ± 16 km). From this instantaneous limb, we obtained the geometric albedo for Huya (pV = 0.079 ± 0.004) and we explored possible three-dimensional shapes and constraints to the mass density for this TNO. We did not detect the satellite of Huya through this occultation, but the presence of rings or debris around Huya was constrained using the occultation data. We also derived an upper limit for a putative Pluto-like global atmosphere of about psurf = 10 nbar.
In recent years, there appeared a need for astronomical observations timed with submillisecond accuracy. These include, e.g., timing stellar occultations by small, subkilometer, or fast near-Earth asteroids and tracking artificial satellites in low-Earth orbit using optical sensors. Precise astrometry of fast-moving satellites and accurate timing of stellar occultations have parallel needs, requiring a reliable time source and good knowledge of camera delays. Thus, there is a need for an external device that would enable equipment and camera testing to check if they reach the required accuracy in time. We designed, constructed, and thoroughly tested a New EXposure Timing Analyser (NEXTA), a Global Navigation Satellite System–based precise timer allowing us to reach an accuracy of 0.1 ms, which is an order of magnitude better than in previously available tools. The device is a simple strip of blinking diodes to be imaged with a camera and compare the imaged time with the internal camera time stamp. Our tests spanned a range of scientific cameras widely used for stellar occultations and ground-based satellite tracking. The results revealed high reliability of both NEXTA and most of the tested cameras but also pointed out that practically all cameras had internal time biases of various levels. NEXTA can serve the community, being easily reproducible with inexpensive components. We provide all the necessary schemes and usage instructions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.