Aims. We present cosmological constraints from a joint analysis of type Ia supernova (SN Ia) observations obtained by the SDSS-II and SNLS collaborations. The dataset includes several low-redshift samples (z < 0.1), all three seasons from the SDSS-II (0.05 < z < 0.4), and three years from SNLS (0.2 < z < 1), and it totals 740 spectroscopically confirmed type Ia supernovae with high-quality light curves. Methods. We followed the methods and assumptions of the SNLS three-year data analysis except for the following important improvements: 1) the addition of the full SDSS-II spectroscopically-confirmed SN Ia sample in both the training of the SALT2 light-curve model and in the Hubble diagram analysis (374 SNe); 2) intercalibration of the SNLS and SDSS surveys and reduced systematic uncertainties in the photometric calibration, performed blindly with respect to the cosmology analysis; and 3) a thorough investigation of systematic errors associated with the SALT2 modeling of SN Ia light curves. Results. We produce recalibrated SN Ia light curves and associated distances for the SDSS-II and SNLS samples. The large SDSS-II sample provides an effective, independent, low-z anchor for the Hubble diagram and reduces the systematic error from calibration systematics in the low-z SN sample. For a flat ΛCDM cosmology, we find Ω m = 0.295 ± 0.034 (stat+sys), a value consistent with the most recent cosmic microwave background (CMB) measurement from the Planck and WMAP experiments. Our result is 1.8σ (stat+sys) different than the previously published result of SNLS three-year data. The change is due primarily to improvements in the SNLS photometric calibration. When combined with CMB constraints, we measure a constant dark-energy equation of state parameter w = −1.018 ± 0.057 (stat+sys) for a flat universe. Adding baryon acoustic oscillation distance measurements gives similar constraints: w = −1.027 ± 0.055. Our supernova measurements provide the most stringent constraints to date on the nature of dark energy.
GRB 000926 has one of the best-studied afterglows to date, with multiple X-ray observations, as well as extensive multifrequency optical and radio coverage. Broadband afterglow observations, spanning from X-ray to radio frequencies, provide a probe of the density structure of the circumburst medium, as well as of the ejecta energetics, geometry, and physical parameters of the relativistic blast wave resulting from the explosion. We present an analysis of Chandra X-Ray Observatory observations of this event, along with Hubble Space T elescope and radio monitoring data. We combine these data with groundbased optical and IR observations and Ðt the synthesized afterglow light curve using models where collimated ejecta expand into a surrounding medium. We Ðnd that we can explain the broadband light curve with reasonable physical parameters if the cooling is dominated by inverse Compton scattering. For this model, an excess due to inverse Compton scattering appears above the best-Ðt synchrotron spectrum in the X-ray band. No previous bursts have exhibited this component, and its observation would imply that the GRB exploded in a moderately dense (n D 30 cm~3) medium, consistent with a di †use interstellar cloud environment.
Measurements of crack growth at fatigue frequencies of 100, 1 and ~ Hz in some gaseous environments show that changes of crack rate with frequency can be partly or entirely due to environment, depending on the alloy. The effects of oxygen, water vapor alone and water vapor in the presence of oxygen and nitrogen have been studied. The critical gas pressures which are necessary to affect crack growth depend on frequency and crack rate. Mechanisms for the effects observed are discussed and results are interpreted in terms of gas adsorption at the crack tip and the immediate action of adsorbed surface layers on the crack while it is growing
Increased rocket motor performance is a major driver in the development of solid rocket propellant formulations for chemical propulsion systems. The use of increased operating pressure is an option to improve performance potentially without the cost of reformulation. A technique has been developed to obtain burning rate data across a range of pressures from ambient to 345 MPa. The technique combines the use of a low loading density combustion bomb with a high loading density closed bomb technique. A series of nine ammonium perchlorate (AP) based propellants were used to demonstrate the use of the technique, and the results were compared to the neat AP burning rate ¤barrier.¥ The effect of plasticizer, oxidizer particle size, catalyst, and binder type were investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.