Solid organ transplant recipients (SOTr) with coronavirus disease 2019 (COVID‐19) are expected to have poorer outcomes compared to nontransplant patients because of immunosuppression and comorbidities. The clinical characteristics of 47 SOTr (38 kidneys and 9 nonkidney organs) were compared to 100 consecutive hospitalized nontransplant controls. Twelve of 47 SOTr managed as outpatients were subsequently excluded from the outcome analyses to avoid potential selection bias. Chronic kidney disease (89% vs 57% P = .0007), diabetes (66% vs 33% P = .0007), and hypertension (94% vs 72% P = .006) were more common in the 35 hospitalized SOTr compared to controls. Diarrhea (54% vs 17%, P < .0001) was more frequent in SOTr. Primary composite outcome (escalation to intensive care unit, mechanical ventilation, or in‐hospital all‐cause mortality) was comparable between SOTr and controls (40% vs 48%, odds ratio [OR] 0.72 confidence interval [CI] [0.33‐1.58] P = .42), despite more comorbidities in SOTr. Acute kidney injury requiring renal replacement therapy occurred in 20% of SOTr compared to 4% of controls (OR 6 CI [1.64‐22] P = .007). Multivariate analysis demonstrated that increasing age and clinical severity were associated with mortality. Transplant status itself was not associated with mortality.
Biopsy samples were obtained from vastus lateralis of eight female subjects before and after a maximal 30-s sprint on a nonmotorized treadmill and were analyzed for glycogen, phosphagens, and glycolytic intermediates. Peak power output averaged 534.4 +/- 85.0 W and was decreased by 50 +/- 10% at the end of the sprint. Glycogen, phosphocreatine, and ATP were decreased by 25, 64, and 37%, respectively. The glycolytic intermediates above phosphofructokinase increased approximately 13-fold, whereas fructose 1,6-diphosphate and triose phosphates only increased 4- and 2-fold. Muscle pyruvate and lactate were increased 19 and 29 times. After 3 min recovery, blood pH was decreased by 0.24 units and plasma epinephrine and norepinephrine increased from 0.3 +/- 0.2 nmol/l and 2.7 +/- 0.8 nmol/l at rest to 1.3 +/- 0.8 nmol/l and 11.7 +/- 6.6 nmol/l. A significant correlation was found between the changes in plasma catecholamines and estimated ATP production from glycolysis (norepinephrine, glycolysis r = 0.78, P less than 0.05; epinephrine, glycolysis r = 0.75, P less than 0.05) and between postexercise capillary lactate and muscle lactate concentrations (r = 0.82, P less than 0.05). The study demonstrated that a significant reduction in ATP occurs during maximal dynamic exercise in humans. The marked metabolic changes caused by the treadmill sprint and its close simulation of free running makes it a valuable test for examining the factors that limit performance and the etiology of fatigue during brief maximal exercise.
The aim of this study was to examine the effect of intermittent high-intensity shuttle running and fluid ingestion on the performance of a soccer skill. Nine semi-professional soccer players volunteered to participate in the study. Their mean (+/- s(x)) age, body mass and maximal oxygen uptake were 20.2+/-0.4 years, 73.2+/-1.8 kg and 59.1+/-1.3 ml x kg(-1) min(-1) respectively. The players were allocated to two randomly assigned trials: ingesting or abstaining from fluid intake during a 90 min intermittent exercise protocol (Loughborough Intermittent Shuttle Test: LIST). This test was designed to simulate the minimum physical demands faced by soccer players during a game. Before and immediately after performance of the test, the players completed a soccer skill test and a mental concentration test. Performance of the soccer skill test after the 'no-fluid' trial deteriorated by 5% (P<0.05), but was maintained during the fluid trial. Mean heart rate, perceived exertion, serum aldosterone, osmolality, sodium and cortisol responses during the test were higher (P<0.05) in the 'no-fluid' trial than in the fluid trial. The results of this study suggest that soccer players should consume fluid throughout a game to help prevent a deterioration in skill performance.
Sixteen subjects volunteered for the study and were divided into a control (4 males and 4 females) and experimental group (4 males and 4 females, who undertook 8 wk of sprint training). All subjects completed a maximal 30-s sprint on a nonmotorized treadmill and a 2-min run on a motorized treadmill at a speed designed to elicit 110% of maximum oxygen uptake (110% run) before and after the period of training. Muscle biopsies were taken from vastus lateralis at rest and immediately after exercise. The metabolic responses to the 110% run were unchanged over the 8-wk period. However, sprint training resulted in a 12% (P less than 0.05) and 6% (NS) improvement in peak and mean power output, respectively, during the 30-s sprint test. This improvement in sprint performance was accompanied by an increase in the postexercise muscle lactate (86.0 +/- 26.4 vs. 103.6 +/- 24.6 mmol/kg dry wt, P less than 0.05) and plasma norepinephrine concentrations (10.4 +/- 5.4 vs. 12.1 +/- 5.3 nmol/l, P less than 0.05) and by a decrease in the postexercise blood pH (7.17 +/- 0.11 vs. 7.09 +/- 0.11, P less than 0.05). There was, however, no change in skeletal muscle buffering capacity as measured by the homogenate technique (67.6 +/- 6.5 vs. 71.2 +/- 4.5 Slykes, NS).
1. Muscle biopsy samples were obtained from the vastus lateralis of six healthy volunteers before and after 30 s of treadmill sprinting. A portion of each biopsy sample was used for mixed-fibre metabolite analysis. Single fibres were dissected from the remaining portion of each biopsy and were used for ATP, phosphocreatine (PCr) and glycogen determination. 2. Before exercise, PCr and glycogen contents were higher in type II fibres (79 3 + 2-7 and 472 + 35 mmol (kg dry matter (DM))1, respectively) compared with type I fibres (71-3 + 3 0 mmol (kg DM)', P < 0-01 and 375 + 25 mmol (kg DM)', P < 0.001, respectively).3. Peak power output was 885 + 66 W and declined by 65 + 3 % during exercise. Phosphocreatine and glycogen degradation in type II fibres during exercise (74 3 + 2-5 and 126-3 + 15-8 mmol (kg DM)1, respectively) was greater than the corresponding degradation in type I fibres (59-1 + 2-9 mmol (kg DM)', P < 0-001 and 77 0 + 14-3 mmol (kg DM)1, P < 0.01, respectively). The decline in ATP during exercise was similar when comparing fibre types (P > 0 05). 4. Compared with previous studies involving similar durations of maximal cycling exercise, isokinetic knee extension and intermittent isometric contraction, the rates of substrate utilization recorded in type I fibres were extremely high, being close to the rapid rates observed in this fibre type during intense contraction with limb blood flow occluded.Several studies have investigated the metabolic response of mixed-fibre human skeletal muscle during maximal short-term dynamic exercise
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.