Biopsy samples were obtained from vastus lateralis of eight female subjects before and after a maximal 30-s sprint on a nonmotorized treadmill and were analyzed for glycogen, phosphagens, and glycolytic intermediates. Peak power output averaged 534.4 +/- 85.0 W and was decreased by 50 +/- 10% at the end of the sprint. Glycogen, phosphocreatine, and ATP were decreased by 25, 64, and 37%, respectively. The glycolytic intermediates above phosphofructokinase increased approximately 13-fold, whereas fructose 1,6-diphosphate and triose phosphates only increased 4- and 2-fold. Muscle pyruvate and lactate were increased 19 and 29 times. After 3 min recovery, blood pH was decreased by 0.24 units and plasma epinephrine and norepinephrine increased from 0.3 +/- 0.2 nmol/l and 2.7 +/- 0.8 nmol/l at rest to 1.3 +/- 0.8 nmol/l and 11.7 +/- 6.6 nmol/l. A significant correlation was found between the changes in plasma catecholamines and estimated ATP production from glycolysis (norepinephrine, glycolysis r = 0.78, P less than 0.05; epinephrine, glycolysis r = 0.75, P less than 0.05) and between postexercise capillary lactate and muscle lactate concentrations (r = 0.82, P less than 0.05). The study demonstrated that a significant reduction in ATP occurs during maximal dynamic exercise in humans. The marked metabolic changes caused by the treadmill sprint and its close simulation of free running makes it a valuable test for examining the factors that limit performance and the etiology of fatigue during brief maximal exercise.
The responses to brief maximal exercise of 10 male subjects have been studied. During 30 s of exercise on a non-motorized treadmill, the mean power output (mean +/- SD) was 424.8 +/- 41.9 W, peak power 653.3 +/- 103.0 W and the distance covered was 167.3 +/- 9.7 m. In response to the exercise blood lactate concentrations increased from 0.60 +/- 0.26 to 13.46 +/- 1.71 mmol.l-1 (p less than 0.001) and blood glucose concentrations from 4.25 +/- 0.45 to 5.59 +/- 0.67 mmol.l-1 (p less than 0.001). The severe nature of the exercise is indicated by the fall in blood pH from 7.38 +/- 0.02 to 7.16 +/- 0.07 (p less than 0.001) and the estimated decrease in plasma volume of 11.5 +/- 3.4% (p less than 0.001). The plasma catecholamine concentrations increased from 2.2 +/- 0.6 to 13.4 +/- 6.4 nmol.l-1 (p less than 0.001) and 0.2 +/- 0.2 to 1.4 +/- 0.6 nmol.l-1 (p less than 0.001) for noradrenaline (NA) and adrenaline (AD) respectively. The plasma concentration of the opioid beta-endorphin increased in response to the exercise from less than 5.0 to 10.2 +/- 3.9 p mol.l-1. The post-exercise AD concentrations correlated with those for lactate as well as with changes in pH and the decrease in plasma volume. Post-exercise beta-endorphin levels correlated with the peak speed attained during the sprint and the subjects peak power to weight ratio. These results suggest that the increases in plasma adrenaline are related to those factors that reflect the stress of the exercise and the contribution of anaerobic metabolism.(ABSTRACT TRUNCATED AT 250 WORDS)
Muscle pH and temperature were measured before, and continuously for 30 min after, a 30-s maximal sprint exercise in ten subjects. These measurements were made with a needle-tipped pH electrode and a thermocouple placed in vastus lateralis. Venous blood samples were collected for pH, lactate and catecholamine estimations and measurements were also made of the arterial blood pressure and heart rate. The muscle and venous pH decreased from 7.17 +/- 0.01 (mean +/- SEM) and 7.39 +/- 0.01 to 6.57 +/- 0.04 and 7.04 +/- 0.03, respectively, in response to the exercise. No significant recovery occurred in either pH measurement for 10 min, after which muscle pH increased to 7.03 +/- 0.03 and venous pH to 7.29 +/- 0.01 by 30 min. Muscle temperature increased by 2.1 degrees C with exercise and also failed to return to pre-exercise values by 30 min. Blood lactate concentration increased from 0.75 +/- 0.04 mmol l-1 before exercise to a peak value of 15.76 +/- 0.35 mmol l-1 5 min after completion of the exercise, and then declined slowly to 10.30 +/- 0.61 mmol l-1 by 30 min. Arterial blood pressure increased transiently with exercise but recovered rapidly, whereas the exercise-induced tachycardia was sustained throughout the recovery period. The recovery from the metabolic and cardiovascular responses to maximal sprint exercise in man is incomplete 30 min after cessation of the exercise.
Twelve county standard hockey players completed a 30 second sprint on a non-motorised treadmill and an uphill treadmill running test to determine maximum oxygen uptake (VO2 max) before and after 6 weeks of high intensity training (fast runs 3-5 miles, intervals 30-300m and circuit training), whilst 11 club standard players completed the same tests without any additional training. For the county standard group there was an 11.1% and 5.0% improvement in peak running speed and distance covered on the sprint treadmill respectively, a 4.2% improvement in V02 max and an 11.5% improvement in run time to exhaustion during the V02 max test (all p < 0.01). No changes were observed for the club standard group. There were large increases in blood lactate (county group 13.26 ± 1.83 mM) and blood glucose (county group 1.56 ± 0.71 mM) concentrations as a result of the treadmill sprint, but there were no additional changes in these variables as a result of training. Thus, the mechanism of adaptation in this type of brief maximal exercise remains in question. Key words: Training, Sprinting, Metabolism, Testing INTRODUCTIONThe causes of fatigue and the factors which limit performance in sprint running exercise are not fully understood. One means of studying the factors which limit performance is to examine the responses to training and the metabolic changes which accompany training-induced improvements in performance. Several studies have demonstrated improvements in the ability to perform high intensity exercise after various types of training. Extended run times to exhaustion during uphill treadmill running have been found after both general conditioning
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.