Eight male subjects volunteered to take part in this study. The exercise protocol consisted of ten 6-s maximal sprints with 30 s of recovery between each sprint on a cycle ergometer. Needle biopsy samples were taken from the vastus lateralis muscle before and after the first sprint and 10 s before and immediately after the tenth sprint. The energy required to sustain the high mean power output (MPO) that was generated over the first 6-s sprint (870.0 +/- 159.2 W) was provided by an equal contribution from phosphocreatine (PCr) degradation and anaerobic glycolysis. Indeed, within the first 6-s bout of maximal exercise PCr concentration had fallen by 57% and muscle lactate concentration had increased to 28.6 mmol/kg dry wt, confirming significant glycolytic activity. However, in the tenth sprint there was no change in muscle lactate concentration even though MPO was reduced only to 73% of that generated in the first sprint. This reduced glycogenolysis occurred despite the high plasma epinephrine concentration of 5.1 +/- 1.5 nmol/l after sprint 9. In face of a considerable reduction in the contribution of anaerobic glycogenolysis to ATP production, it was suggested that, during the last sprint, power output was supported by energy that was mainly derived from PCr degradation and an increased aerobic metabolism.
The purpose of the present study was to examine the validity of using a 20 m progressive shuttle run test to estimate maximal oxygen uptake. Running ability was described as the final level attained on the shuttle run test and as time on a 5 km run. Maximal oxygen uptake (VO2 max) was determined directly for seventy-four volunteers (36 men, 38 women) who also completed the shuttle run test. Maximal oxygen uptake values were 58.5 +/- 7.0 and 47.4 +/- 6.1 ml.kg-1.min-1 for the men and women respectively (mean +/- SD, P less than 0.01). The levels attained on the shuttle run test were 12.6 +/- 1.5 (men) and 9.6 +/- 1.8 (women; P less than 0.01). The correlation between VO2 max and shuttle level was 0.92. The correlation between VO2 max and the 5 km run was -0.94 and the correlation between both field tests was -0.96. The results of this study suggest that a progressive shuttle run test provides a valid estimate of VO2 max and indicates 5 km running potential in active men and women.
Summary. This paper examines how selected physiological performance variables, such as maximal oxygen uptake, strength and power, might best be scaled for subject differences in body size. The apparent dilemma between using either ratio standards or a linear adjustment method to scale was investigated by considering how maximal oxygen uptake (l" rain-1), peak and mean power output (W) might best be adjusted for differences in body mass (kg). A curvilinear power function model was shown to be theoretically, physiologically and empirically superior to the linear models. Based on the fitted power functions, the best method of scaling maximum oxygen uptake, peak and mean power output, required these variables to be divided by body mass, recorded in the units kg 2/3. Hence, the power function ratio standards (ml.kg -2/3.min -1) and (W.kg-2/3) were best able to describe a wide range of subjects in terms of their physiological capacity, i.e. their ability to utilise oxygen or record power maximally, independent of body size. The simple ratio standards (ml. kg-1. min-1) and (W. kg -1) were found to best describe the same subjects according to their performance capacities or ability to run which are highly dependent on body size. The appropriate model to explain the experimental design effects on such ratio standards was shown to be log-normal rather than normal. Simply by taking logarithms of the power function ratio standard, identical solutions for the design effects are obtained using either ANOVA or, by taking the unscaled physiological variable as the dependent variable and the body size variable as the covariate, ANCOVA methods.
Twenty-four players from the 1st/2nd (elite) and 24 players from the 3rd/4th (non-elite) university football teams were recruited to evaluate the Loughborough Soccer Passing Test (LSPT) and Loughborough Soccer Shooting Test (LSST) as tools to assess soccer skill. The LSPT requires players to complete 16 passes as quickly as possible. The LSST requires players to pass, control, and shoot the ball to targets on a full-sized goal. Participants completed two main trials each separated by at least one day. During both trials, the participants were given practice efforts before recording the mean of the next two (LSPT) or 10 (LSST) attempts as the performance score. For the LSPT, the mean time taken, added penalty time, and overall performance time were less in the elite players (elite: 43.6 s, s = 3.8; non-elite: 52.5 s, s= 7.4; P= 0.0001). For the LSST, there was no difference in the mean points scored per shot between groups (elite: 1.34, s = 0.46; non-elite: 1.28, s = 0.53). However, the elite players had higher mean shot speed (elite: 80 km h(-1), s = 4.5; non-elite: 74 km h(-1), s = 4.2; P < 0.0001) and performed each shot sequence faster (elite: 7.87 s, s= 0.29; non-elite: 8.07 s, s= 0.35; P= 0.037) than the non-elite players. Performance on both tests was more repeatable in elite players. In conclusion, the LSPT and LSST are valid and reliable protocols to assess differences in soccer skill performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.