Summary: RNA-seq, the application of next-generation sequencing to RNA, provides transcriptome-wide characterization of cellular activity. Assessment of sequencing performance and library quality is critical to the interpretation of RNA-seq data, yet few tools exist to address this issue. We introduce RNA-SeQC, a program which provides key measures of data quality. These metrics include yield, alignment and duplication rates; GC bias, rRNA content, regions of alignment (exon, intron and intragenic), continuity of coverage, 3′/5′ bias and count of detectable transcripts, among others. The software provides multi-sample evaluation of library construction protocols, input materials and other experimental parameters. The modularity of the software enables pipeline integration and the routine monitoring of key measures of data quality such as the number of alignable reads, duplication rates and rRNA contamination. RNA-SeQC allows investigators to make informed decisions about sample inclusion in downstream analysis. In summary, RNA-SeQC provides quality control measures critical to experiment design, process optimization and downstream computational analysis.Availability and implementation: See www.genepattern.org to run online, or www.broadinstitute.org/rna-seqc/ for a command line tool.Contact: ddeluca@broadinstitute.orgSupplementary information: Supplementary data are available at Bioinformatics online.
BackgroundIn the past decade, estimates of malaria infections have dropped from 500 million to 225 million per year; likewise, mortality rates have dropped from 3 million to 791,000 per year. However, approximately 90% of these deaths continue to occur in sub-Saharan Africa, and 85% involve children less than 5 years of age. Malaria mortality in children generally results from one or more of the following clinical syndromes: severe anemia, acidosis, and cerebral malaria. Although much is known about the clinical and pathological manifestations of CM, insights into the biology of the malaria parasite, specifically transcription during this manifestation of severe infection, are lacking.Methods and FindingsWe collected peripheral blood from children meeting the clinical case definition of cerebral malaria from a cohort in Malawi, examined the patients for the presence or absence of malaria retinopathy, and performed whole genome transcriptional profiling for Plasmodium falciparum using a custom designed Affymetrix array. We identified two distinct physiological states that showed highly significant association with the level of parasitemia. We compared both groups of Malawi expression profiles with our previously acquired ex vivo expression profiles of parasites derived from infected patients with mild disease; a large collection of in vitro Plasmodium falciparum life cycle gene expression profiles; and an extensively annotated compendium of expression data from Saccharomyces cerevisiae. The high parasitemia patient group demonstrated a unique biology with elevated expression of Hrd1, a member of endoplasmic reticulum-associated protein degradation system.ConclusionsThe presence of a unique high parasitemia state may be indicative of the parasite biology of the clinically recognized hyperparasitemic severe disease syndrome.
The infection consequences of the introduced cestode fish parasite Bothriocephalus acheilognathi were studied in a cohort of wild, young-of-the-year common carp Cyprinus carpio that lacked co-evolution with the parasite. Within the cohort, parasite prevalence was 42% and parasite burdens were up to 12% body weight. Pathological changes within the intestinal tract of parasitized carp included distension of the gut wall, epithelial compression and degeneration, pressure necrosis and varied inflammatory changes. These were most pronounced in regions containing the largest proportion of mature proglottids. Although the body lengths of parasitized and non-parasitized fish were not significantly different, parasitized fish were of lower body condition and reduced weight compared to non-parasitized conspecifics. Stable isotope analysis (δ15N and δ13C) revealed trophic impacts associated with infection, particularly for δ15N where values for parasitized fish were significantly reduced as their parasite burden increased. In a controlled aquarium environment where the fish were fed ad libitum on an identical food source, there was no significant difference in values of δ15N and δ13C between parasitized and non-parasitized fish. The growth consequences remained, however, with parasitized fish growing significantly slower than non-parasitized fish, with their feeding rate (items s−1) also significantly lower. Thus, infection by an introduced parasite had multiple pathological, ecological and trophic impacts on a host with no experience of the parasite.
The morphology, life cycle, transmission, host species and geographical distribution of Bothriocephalus acheilognathi are presented. The importance of the disease, diagnosis, clinical signs, macroscopic and microscopic lesions (pathological changes), disease mechanism and control and prevention are also discussed.
When non-native species are introduced into a new range, their parasites can also be introduced, with these potentially spilling-over into native hosts. However, in general, evidence suggests that a high proportion of their native parasites are lost during introduction and infections by some new parasites from the native range might occur, potentially resulting in parasite spill-back to native species. These processes were investigated here using parasite surveys and literature review on seven non-native freshwater fishes introduced into England and Wales. Comparison of the mean numbers of parasite species and genera per population for each fish species England and Wales with their native ranges revealed\9 % of the native parasite fauna were present in their populations in England and Wales. There was no evidence suggesting these introduced parasites had spilled over into sympatric native fishes. The non-native fishes did acquire parasites following their introduction, providing potential for parasite spill-back to sympatric fishes, and resulted in non-significant differences in overall mean numbers of parasites per populations between the two ranges. Through this acquisition, the non-native fishes also had mean numbers of parasite species and genera per population that were not significantly different to sympatric native fishes. Thus, the non-native fishes in England and Wales showed evidence of enemy release, acquired new parasites following introduction providing potential for spill-back, but showed no evidence of parasite spill-over.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.