Roughly 60% of the Earth's outer surface is comprised of oceanic crust formed by volcanic processes at mid-ocean ridges (MORs). Although only a small fraction of this vast volcanic terrain has been visually surveyed and/or sampled, the available evidence suggests that explosive eruptions are rare on MORs, particularly at depths below the critical point for
The recent Arctic GAkkel Vents Expedition (AGAVE) to the Arctic Ocean's Gakkel Ridge (July/August 2007) aboard the Swedish ice-breaker I/B Oden employed autonomous underwater vehicles (AUVs) for water-column and ocean bottom surveys. These surveys were unique among AUV operations to date in requiring georeferenced navigation in proximity to the seafloor beneath permanent and moving ice cover. We report results for long-baseline (LBL) acoustic navigation during autonomous under-ice surveys near the seafloor and adaptation of the LBL concept for several typical operational situations including navigation in proximity to the ship during vehicle recoveries. Fixed seafloor transponders were free-fall deployed from the ship for deep positioning. The ship's helicopter collected acoustic travel times from several locations to geo-reference the transponders' locations, subject to the availability of openings in the ice. Two shallow beacons suspended from the • E and at 85• N, 85• E. Long baseline transponders were deployed at both survey sites, two at 7• E and four at 85• E.ship provided near-surface spherical navigation in ship-relative coordinates. During routine recoveries, we used this system to navigate the vehicles into open water near the ship before commanding them to surface. In cases where a vehicle was impaired, its position was still determined acoustically through some combination of its acoustic modem, the fixed seafloor transponders, the ship-deployed transponders, and an on-board backup relay transponder. The techniques employed included ranging adapted for a moving origin and hyperbolic navigation.
Abstract-The Arctic seafloor remains one of the last unexplored areas on Earth. Exploration of this unique environment using standard remotely operated oceanographic tools has been obstructed by the dense Arctic ice cover. In the summer of 2007 the Arctic Gakkel Vents Expedition (AGAVE) was conducted with the express intention of understanding aspects of the marine biology, chemistry and geology associated with hydrothermal venting on the section of the mid-ocean ridge known as the Gakkel Ridge.Unlike previous research expeditions to the Arctic the focus was on high resolution imaging and sampling of the deep seafloor. To accomplish our goals we designed two new Autonomous Underwater Vehicles (AUVs) named Jaguar and Puma, which performed a total of nine dives at depths of up to 4062m. These AUVs were used in combination with a towed vehicle and a conventional CTD (conductivity, temperature and depth) program to characterize the seafloor. This paper describes the design decisions and operational changes required to ensure useful service, and facilitate deployment, operation, and recovery in the unique Arctic environment.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.