We study methods for calculating the thermal diffusivity of solids from laser flash experiments. This experiment involves subjecting the front surface of a small sample of the material to a heat pulse and recording the resulting temperature rise on the opposite (rear) surface. Recently, a method was developed for calculating the thermal diffusivity from the rear-surface temperature rise, which was shown to produce improved estimates compared with the commonly used halftime approach. This so-called rear-surface integral method produced a formula for calculating the thermal diffusivity of homogeneous samples under the assumption that the heat pulse is instantaneously absorbed uniformly into a thin layer at the front surface. In this paper, we show how the rear-surface integral method can be applied to a more physically realistic heat flow model involving the actual heat pulse shape from the laser flash experiment. New thermal diffusivity formulas are derived for handling arbitrary pulse shapes for either a homogeneous sample or a heterogeneous sample comprising two layers of different materials. Presented numerical experiments confirm the accuracy of the new formulas and demonstrate how they can be applied to the kinds of experimental data arising from the laser flash experiment.
A simple and inexpensive thermal diffusivity apparatus is described for measurement up to1600 K. The novel features of the apparatus include a light pipe, a long furnace, and a differential thermocouple. A low heat-load sample holder for clamping the sample in a vertical position is also described. The results of measurements on AXM-5Q graphite are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.