We report the results of an experimental and theoretical project dedicated to the study of Quasi Single Helicity Reversed Field Pinch plasmas. The project has involved several RFP devices and numerical codes. It appears that QSH spectra are a feature common to all the experiments.
Energy confinement comparable with tokamak quality is achieved in the Madison Symmetric Torus (MST) reversed field pinch (RFP) at a high beta and low toroidal magnetic field. Magnetic fluctuations normally present in the RFP are reduced via parallel current drive in the outer region of the plasma. In response, the electron temperature nearly triples and beta doubles. The confinement time increases tenfold (to ∼10 ms), which is comparable with Land H-mode scaling values for a tokamak with the same plasma current, density, heating power, size and shape. Runaway electron confinement is evidenced by a 100-fold increase in hard x-ray bremsstrahlung. Fokker-Planck modelling of the x-ray energy spectrum reveals that the high energy electron diffusion is independent of the parallel velocity, uncharacteristic of magnetic transport and more like that for electrostatic turbulence. The high core electron temperature correlates strongly with a broadband reduction of resonant modes at mid-radius where the stochasticity is normally most intense. To extend profile control and add auxiliary heating, rf current drive and neutral beam heating are in development. Low power lower-hybrid and electron Bernstein wave injection experiments are underway. Dc current sustainment via ac helicity injection (sinusoidal inductive loop voltages) is also being tested. Low power neutral beam injection shows that fast ions are well-confined, even in the presence of relatively large magnetic fluctuations.
The Keda Torus eXperiment (KTX) is a medium-sized reversed field pinch (RFP) device under construction at the University of Science and Technology of China. The KTX has a major radius of 1.4 m and a minor radius of 0.4 m with an Ohmic discharge current up to 1 MA. The expected electron density and temperature are, respectively, 2 × 10 19 m −3 and 800 eV. A combination of a stainless steel vacuum chamber and a thin copper shell (with a penetration time of 20 ms) surrounding the plasma provides an opportunity for studying resistive wall mode instabilities. The unique double-C design of the KTX vacuum vessel allows access to the interior of the KTX for easy first-wall modifications and investigations of power and particle handling, a largely unexplored territory in RFP research leading to demonstration of the fusion potential of the RFP concept. An active feedback mode control system is designed and will be implemented in the second phase of the KTX program. The recent progress of this program will be presented, including the design of the vacuum vessel, magnet systems and power supplies.
Characterization of water‐conducting porosity at and near saturation is required in understanding rainfall and snowmelt infiltration and runoff as well as chemical transport in soil. There are methods available to quantify water‐conducting porosity in situ, but with serious limitations. The objective of this paper was to present a general equation for water‐conducting porosity based on ponded‐ and tension‐infiltration measurements. Some analytical solutions are developed for specific unsaturated hydraulic conductivity functions such as the Gardner's exponential and rational power models, Brooks and Corey model, and van Genuchten–Mualem model. Tension infiltrometer measurements were taken at six different pressure heads between −0.3 to −2.2 kPa and double‐ring infiltrometer measurements at a pressure head of 0.35 kPa. The analytical solutions were compared with numerical solutions and existing methods for calculation of water‐conducting porosity. Both the analytical and numerical solutions can reliably determine the water‐conducting porosity of surface soils in situ within the practical pressure head range of the tension infiltrometer. Our method gave consistent water‐conducting porosity, regardless of the width of pressure head ranges. The existing methods overestimated water‐conducting macroporosity by a factor of greater than two and overestimated total water‐conducting porosity by a factor of >10 for measurements taken at large pressure head intervals compared with that of our method. Combining with hydraulic parameter estimation from tension infiltrometer measurements, our method may reduce the number of tension infiltration measurements required to calculate water‐conducting porosity.
The fast electron flux driven by Lower Hybrid Wave (LHW) in the scrape-off layer (SOL) in EAST is analyzed both theoretically and experimentally. The five bright belts flowing along the magnetic field lines in the SOL and hot spots at LHW guard limiters observed by charge coupled device and infrared cameras are attributed to the fast electron flux, which is directly measured by retarding field analyzers (RFA). The current carried by the fast electron flux, ranging from 400 to 6000 A/m 2 and in the direction opposite to the plasma current, is scanned along the radial direction from the limiter surface to the position about 25 mm beyond the limiter. The measured fast electron flux is attributed to the high parallel wave refractive index n jj components of LHW. According to the antenna structure and the LHW power absorbed by plasma, a broad parallel electric field spectrum of incident wave from the antennas is estimated. The radial distribution of LHW-driven current density is analyzed in SOL based on Landau damping of the LHW. The analytical results support the RFA measurements, showing a certain level of consistency. In addition, the deposition profile of the LHW power density in SOL is also calculated utilizing this simple model. This study provides some fundamental insight into the heating and current drive effects induced by LHW in SOL, and should also help to interpret the observations and related numerical analyses of the behaviors of bright belts and hot spots induced by LHW. V C 2015 AIP Publishing LLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.