The pandemic of coronavirus disease 2019 (COVID-19) has posed serious challenges. It is vitally important to further clarify the epidemiological characteristics of the COVID-19 outbreak for future study and prevention and control measures. Epidemiological characteristics and spatial−temporal analysis were performed based on COVID-19 cases from 21 January 2020 to 1 March 2020 in Shandong Province, and close contacts were traced to construct transmission chains. A total of 758 laboratory-confirmed cases were reported in Shandong. The sex ratio was 1.27: 1 (M: F) and the median age was 42 (interquartile range: 32–55). The high-risk clusters were identified in the central, eastern and southern regions of Shandong from 25 January 2020 to 10 February 2020. We rebuilt 54 transmission chains involving 209 cases, of which 52.2% were family clusters, and three widespread infection chains were elaborated, occurring in Jining, Zaozhuang and Liaocheng, respectively. The geographical and temporal disparity may alert public health agencies to implement specific measures in regions with different risk, and should attach importance on how to avoid household and community transmission.
The early identification and prediction of Hand-foot-and-Mouth diseases (HFMD) play an important role in the disease prevention and control. However, suitable models are different in regionsd due to the differences in geography, social economy factors. We collected data associated with daily reported HFMD cases and weather factors of Zibo city in 2010~2019 and used Generalized Additive Model (GAM) to evaluate effects of weather factors on HFMD cases. Then, GAM, Support Vectors Regression (SVR) and Random Forest Regression (RFR) models are used to compare predictive results. Annual average incidence was 129.72/100,000 from 2010 to 2019. Its distribution showed a unimodal trend, with incidence increasing from March, peaking from May to September. Our study revealed the nonlinear relationship between temperature, rainfall and relative humidity and HFMD cases, and based on predictive result, the performances of three models constructed ranked in descending order are: SVR > GAM> RFR, and SVR has the smallest prediction errors. These findings provide quantitative evidence for the prediction of HFMD for special high-risk regions and can help the public health agencies implement prevention and control measures in advance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.