In this paper we study the steady-state deflection of a spinning nonflat disk, both theoretically and experimentally. Both the initial and the deformed shapes of the disk are assumed to be axisymmetrical. Von Karman’s plate model is adopted to formulate the equations of motion, and Galerkin’s method is employed to discretize the partial differential equations. In the case when the initial height of the nonflat disk is sufficiently large, multiple equilibrium positions can exist, among them the two stable one-mode solutions P01 and P03 are of particular interest. Theoretical investigation shows that if the disk is initially in the stressed position P03, it will be snapped to position P01 when the rotation speed reaches a critical value. Experiments on a series of copper disks with different initial heights are conducted to verify the theoretical predictions. Generally speaking, the experimental measurements agree well with theoretical predictions when the initial height is small. For the disks with large initial heights, on the other hand, the measured snapping speeds are significantly below the theoretical predictions. The circumferential waviness of the copper disks induced in the manufacturing process and the aerodynamic force at high rotation speed are two possible factors causing this discrepancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.