A model is developed herein for predicting the evolution of interface degradation, matrix cracking, and delamination at multiple sites in laminated continuous fiber composite plates subjected to monotonic and/or cyclic mechanical loading. Due to the complicated nature of the many cracks and their interactions, a multi-scale micro-meso-local-global methodology is deployed in order to model all damage modes. Interface degradation is first modeled analytically on the microscale, and the results are homogenized to produce a cohesive zone model that is capable of predicting interface fracture. Subsequently, matrix cracking in the plies is modeled analytically on the meso-scale, and this result is homogenized to produce ply level damage dependent constitutive equations. The evolution of delaminations is considered on the local scale, and this effect is modeled using a three dimensional finite element algorithm. Results of this analysis are homogenized to produce damage dependent laminate equations. Finally, global response of the damaged plate is modeled using a plate finite element algorithm. Evolution of all three modes of damage is predicted via interfacing all four scales into a single multi-scale algorithm that is computationally tenable for use on a desktop computer. Results obtained herein suggest that this model may be capable of accurately predicting complex damage patterns such as that observed at open holes in laminated plates.
Naphthalene sublimation experiments have been conducted to examine the effects of channel orientation, rotational Coriolis force, ad a sharp turn, on the local heat (mass) transfer distributions in a two-pass square channel with rib-roughened walls, rotating about a perpendicular axis. The test channel was oriented so that the direction of rotation was perpendicular or at a 45 deg angle to the leading and trailing walls. In the two straight passes of the test channel, there were parallel 90 or 60 deg ribs on the leading and trailing walls. The test channel modeled serpentine cooling passages in modern gas turbine blades. The results showed that the heat (mass) transfer was very low on the leading wall of the first pass when the channel was oriented with the rotating direction normal to the leading and trailing walls. There were regions of very low heat (mass) transfer on both the leading and trailing walls in the turn, especially on the trailing wall in the turn when the channel with transverse ribs was oriented diagonally. For the given diagonal channel orientation, rotational Coriolis forces caused the leading and trailing wall heat (mass) transfer to be high near the outer edges of the walls in the channel with transverse ribs; rotation-induced secondary flows dominated near wall rib-induced secondary flows in the channel with angled ribs, since the heat (mass) transfer was generally higher near the outer edges of the walls than near the inner edges in the first and second straight passes. [S0022-1481(00)00201-2]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.