Heritable, but reversible, changes in transposable element activity were first observed in maize by Barbara McClintock in the 1950s. More recently, transposon silencing has been associated with DNA methylation, histone H3 lysine-9 methylation (H3mK9), and RNA interference (RNAi). Using a genetic approach, we have investigated the role of these modifications in the epigenetic regulation and inheritance of six Arabidopsis transposons. Silencing of most of the transposons is relieved in DNA methyltransferase (met1), chromatin remodeling ATPase (ddm1), and histone modification (sil1) mutants. In contrast, only a small subset of the transposons require the H3mK9 methyltransferase KRYPTONITE, the RNAi gene ARGONAUTE1, and the CXG methyltransferase CHROMOMETHYLASE3. In crosses to wild-type plants, epigenetic inheritance of active transposons varied from mutant to mutant, indicating these genes differ in their ability to silence transposons. According to their pattern of transposon regulation, the mutants can be divided into two groups, which suggests that there are distinct, but interacting, complexes or pathways involved in transposon silencing. Furthermore, different transposons tend to be susceptible to different forms of epigenetic regulation.
The Arabidopsis gene DDM1 is required to maintain DNA methylation levels and is responsible for transposon and transgene silencing. However, rather than encoding a DNA methyltransferase, DDM1 has similarity to the SWI/SNF family of adenosine triphosphate-dependent chromatin remodeling genes, suggesting an indirect role in DNA methylation. Here we show that DDM1 is also required to maintain histone H3 methylation patterns. In wild-type heterochromatin, transposons and silent genes are associated with histone H3 methylated at lysine 9, whereas known genes are preferentially associated with methylated lysine 4. In ddm1 heterochromatin, DNA methylation is lost, and methylation of lysine 9 is largely replaced by methylation of lysine 4. Because DNA methylation has recently been shown to depend on histone H3 lysine 9 methylation, our results suggest that transposon methylation may be guided by histone H3 methylation in plant genomes. This would account for the epigenetic inheritance of hypomethylated DNA once histone H3 methylation patterns are altered.
Robertson's Mutator transposable elements in maize undergo cycles of activity and then inactivity that correlate with changes in cytosine methylation. Mutator-like elements are present in the Arabidopsis genome but are heavily methylated and inactive. These elements become demethylated and active in the chromatin-remodeling mutant ddm1 (Decrease in DNA Methylation), which leads to loss of heterochromatic DNA methylation. Thus, DNA transposons in plants appear to be regulated by chromatin remodeling. In inbred ddm1 strains, transposed elements may account, in part, for mutant phenotypes unlinked to ddm1. Gene silencing and paramutation are also regulated by DDM1, providing support for the proposition that epigenetic silencing is related to transposon regulation.
The higher plant Arabidopsis thaliana (Arabidopsis) is an important model for identifying plant genes and determining their function. To assist biological investigations and to define chromosome structure, a coordinated effort to sequence the Arabidopsis genome was initiated in late 1996. Here we report one of the first milestones of this project, the sequence of chromosome 4. Analysis of 17.38 megabases of unique sequence, representing about 17% of the genome, reveals 3,744 protein coding genes, 81 transfer RNAs and numerous repeat elements. Heterochromatic regions surrounding the putative centromere, which has not yet been completely sequenced, are characterized by an increased frequency of a variety of repeats, new repeats, reduced recombination, lowered gene density and lowered gene expression. Roughly 60% of the predicted protein-coding genes have been functionally characterized on the basis of their homology to known genes. Many genes encode predicted proteins that are homologous to human and Caenorhabditis elegans proteins.
The genomes of higher plants and animals are highly differentiated, and are composed of a relatively small number of genes and a large fraction of repetitive DNA. The bulk of this repetitive DNA constitutes transposable, and especially retrotransposable, elements. It has been hypothesized that most of these elements are heavily methylated relative to genes, but the evidence for this is controversial. We show here that repeat sequences in maize are largely excluded from genomic shotgun libraries by the selection of an appropriate host strain because of their sensitivity to bacterial restriction-modification systems. In contrast, unmethylated genic regions are preserved in these genetically filtered libraries if the insert size is less than the average size of genes. The representation of unique maize sequences not found in plant reference genomes is also greatly enriched. This demonstrates that repeats, and not genes, are the primary targets of methylation in maize. The use of restrictive libraries in genome shotgun sequencing in plant genomes should allow significant representation of genes, reducing the number of reactions required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.