The restrained dynamic creep behaviour and mechanical properties of SmartSet GHV bone cement have been investigated at both room temperature and body temperature. It was found that the bone cement behaves significant differently at room temperature from that at body temperature. The test temperature had a strong effect on the creep performance of the bone cements with a higher creep rate observed at body temperature at each loading cycle. For both temperatures, two stages of creep were identified with a higher creep rate during early cycling followed by a steady state creep rate. The relationship between creep deformation and loading cycle can be expressed by a Hyperb 1 model. As a visco-elastic material, the sensitivity of bone cement to the temperature change was evident during mechanical testing. Compared to the mechanical strength at room temperature, a decreased value was demonstrated at body temperature. The bending modulus was very sensitive to the change in testing temperature, where a reduction of 52% was recorded. A significant reduction in compressive and bending strength, 31 and 23% were recorded respectively. The effect of temperature on bending strength was less apparent, where only 13% reduction was exhibited at body temperature compared to room temperature.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.