We correlate structure analyzed by transmission electron microscopy with photo- and cathodoluminescence studies of GaN/Al2O3(0001) and GaN/SiC(0001) and show that an additional UV line at 364nm/3.4eV can be connected to the occurrence of stacking faults. We explain the occurrence of this line by a model that is based on the concept of excitons bound to stacking faults that form a quantum well of cubic material in the wurtzite lattice of the layer material. The model is in reasonable agreement with the experimental observations.
The effect of the dislocation line density produced by the relaxation of strain in GaAs/In x Ga 1Ϫx As multiquantum wells where xϭ0.155-0.23 has been studied. There is a strong correlation between the dark line density, observed by cathodoluminescence, before processing of the wafers into photodiode devices, and the subsequent low forward bias ͑Ͻ1.5 V͒ dark current densities of the devices. A comparison is made of the correlation between the reverse bias current density and dark line density and it is found that, in this range of strain, the forward bias current density varies more. Two growth methods, molecular beam epitaxy and metal organic vapor phase epitaxy, have been used to produce the wafers and no difference between the growth methods has been found in dark line or current density variations with strain.
Yellow luminescence (YL) has been studied in GaN:Mg doped with Mg concentrations ranging from 1019 to 1021 cm-3 by spectral CL (T=K) and TEM and explained by suggesting that a different mechanism could be responsible for the YL in p-type GaN with respect to that acting in n-type GaN.Transitions at 2.2, 2.8, 3.27, 3.21, and 3.44 eV were found. In addition to the wurtzite phase, TEM showed a different amount of the cubic phase in the samples. Nano tubes with a density of 3×109 cm−2 were also observed by approaching the layer/substrate interface. Besides this, coherent inclusions were found with a diameter in the nm range and a volume fraction of about 1%.The 2.8 eV transition was correlated to a deep level at 600 meV below the conduction band (CB) due to MgGa-VN complexes. The 3.27 eV emission was ascribed to a shallow acceptor at about 170-190 meV above the valence band (VB) due to MgGa.The 2.2 eV yellow band, not present in low doped samples, increased by increasing the Mg concentration. It was ascribed to a transition between a deep donor level at 0.8-1.1 eV below the CB edge due to NGa and the shallow acceptor due to MgGa. This assumption was checked by studying the role of C in Mg compensation. CL spectra from a sample with high C content showed transitions between a C-related 200 meV shallow donor and a deep donor level at about 0.9-1.1 eV below the CB due to a NGa-VN complex. In our hypothesis this should induce a decrease of the integrated intensity in both the 2.2 and 2.8 eV bands, as actually shown by CL investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.