BackgroundGrowing evidence suggests that alterations of the inflammatory/immune system contribute to the pathogenesis of depression. Indeed, depressed patients exhibit increased levels of inflammatory markers in both the periphery and the brain, and high comorbidity exists between major depression and diseases associated with inflammatory alterations. In order to characterize the link between depression and inflammation, we aimed to investigate whether an altered inflammatory system is present in a genetic model of vulnerability for depression, namely rats with partial or total deletion of the serotonin transporter (SERT) gene.MethodsWild-type, heterozygous and homozygous SERT rats were analyzed under basal condition or following a challenge with an acute injection of lipopolysaccharide (LPS) and killed 24 h or 5 days later.ResultsWe found that SERT mutant rats show altered cytokine expression in the dorsal and ventral hippocampus at basal conditions, and they also display an exacerbated cytokine response to the LPS challenge. Moreover, mutant rats exhibit differences in the expression of markers for microglia activation.ConclusionBased on these data, we suggest that basal or functional alterations of immune/inflammatory systems might contribute to the phenotype of SERT rats and to their heightened susceptibility to depressive-like behavior.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.