Mobile microRNAs (miRNAs) serve as local and long-distance signals in developmental patterning and stress responses in plants. However, mechanisms governing the non-cell autonomous activities of miRNAs remain elusive. Here, we show that mutations that disrupt microtubule dynamics are specifically defective for the non-cell autonomous actions of mobile miRNAs, including miR165/6 that is produced in the endodermis and moves to the vasculature to pattern xylem cell fates in Arabidopsis roots. We show that KTN1, a subunit of a microtubule-severing enzyme, is required in source and intermediary cells to inhibit the loading of miR165/6 into ARGONUATE1 (AGO1), which is cell-autonomous, to enable the miRNA's cell exit. Microtubule disruption enhances the association of miR165/6 with AGO1 in the cytosol. These findings suggest that, while cell-autonomous miRNAs load into AGO1 in the nucleus, cytoplasmic AGO1 loading of mobile miRNAs is a key step regulated by microtubules to promote the range of miRNA's cell-to-cell movement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.