FeCrNiCoB x high-entropy alloy coatings were prepared by laser cladding, and the effects of boron addition on the microstructure, hardness and corrosion resistance of the coatings were studied. Results showed that the coatings comprised a simple FCC solid solution with boride precipitation. When 0.5 ≤ x ≤ 1.0, (Cr, Fe)2B with an orthorhombic structure was found in the coatings, and the hardness and corrosion resistance of the coatings were enhanced by increasing boron content. As x approached 1.25, the borides changed from orthorhombic (Cr, Fe)2B to tetragonal (Fe, Cr)2B, which deteriorated the corrosion resistance of the coatings. Stacking faults found in (Cr, Fe)2B may be caused by the phase transformation of borides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.