Pig umbilical hernia (UH) affects pig welfare and brings considerable economic loss to the pig industry. To date, the molecular mechanisms underlying pig UH are still poorly understood. To identify potential loci for susceptibility to this disease, we performed a genome-wide association study in an Erhualian 9 Shaziling F 2 intercross population. A total of 45 animals were genotyped using Illumina Porcine SNP60 BeadChips. We observed a SNP (rs80993347) located in the calpain-9 (CAPN9) gene on Sus scrofa chromosome 14 that was significantly associated with UH (P = 1.97 9 10 À10 ). Then, we identified a synonymous mutation rs321865883 (g.20164T>C) in exon 10 of the CAPN9 gene that distinguished two affected individuals (CC) from their normal full-sibs (TC). Finally, quantitative polymerase chain reaction was explored to investigate the mRNA expression profile of the CAPN9 gene in 12 tissues in Yorkshire pigs at different developmental stages (3, 90 and 180 days). CAPN9 showed high expression levels in the gastrointestinal tract at these three growth stages. The results of this study indicate that the CAPN9 gene might be implicated in UH. Further studies are required to establish a role of CAPN9 in pig UH.
β-Ureidopropionase is the third enzyme of the pyrimidine degradation pathway and it catalyzes the conversion of N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid to β-alanine and β-aminoisobutyric acid, respectively, and ammonia and CO2. To date, only 16 genetically confirmed patients with a complete ß-ureidopropionase deficiency have been reported. Here, we report the clinical, biochemical, and molecular analysis of a newly identified patient with β-ureidopropionase deficiency. Mutation analysis of the UPB1 gene showed that the patient was compound heterozygous for a novel synonymous mutation c.93C >T (p.Gly31Gly) in exon 1 and a previously described missense mutation c.977G >A (p.Arg326Gln) in exon 9. The in silico predicted effect of the synonymous mutation p.Gly31Gly on pre-mRNA splicing was investigated using a minigene approach. Wild-type and the mutated minigene constructs, containing the entire exon 1, intron 1, and exon 2 of UPB1, yielded different splicing products after expression in HEK293 cells. The c.93C >T (p.Gly31Gly) mutation resulted in altered pre-mRNA splicing of the UPB1 minigene construct and a deletion of the last 13 nucleotides of exon 1. This deletion (r.92_104delGCAAGGAACTCAG) results in a frame shift and the generation of a premature stop codon (p.Lys32SerfsX31). Using a minigene approach, we have thus identified the first synonymous mutation in the UPB1 gene, creating a cryptic splice-donor site affecting pre-mRNA splicing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.