Radiofrequency thermal ablation (RFA) destroys tumoral tissue generating a local necrosis followed by marked inflammatory response with a dense T-cell infiltrate. In this study, we tested whether hepatocellular carcinoma thermal ablation can induce or enhance T-cell responses specific for hepatocellular carcinoma-associated antigens. Peripheral blood mononuclear cells derived from 20 patients with hepatocellular carcinoma were stimulated before and a month after RFA treatment with autologous hepatocellular carcinoma-derived protein lysates obtained before and immediately after RFA treatment. The effect of thermal ablation on memory T-cell responses to recall antigens [tetanus toxoid, protein purified derivative (PPD), Escherichia coli] was also assessed. T-cell reactivity was analyzed in an IFN-; enzymelinked immunospot assay and by intracellular IFN-; staining. Treatment was followed by a significant increase of patients responsive either to tumor antigens derived from both the untreated hepatocellular carcinoma tissue (P < 0.05) and the necrotic tumor (P < 0.01) and by a higher frequency of circulating tumor-specific T cells. T-cell responses to recall antigens were also significantly augmented. Phenotypic analysis of circulating T and natural killer cells showed an increased expression of activation and cytotoxic surface markers. However, tumor-specific T-cell responses were not associated with protection from hepatocellular carcinoma relapse. Evidence of tumor immune escape was provided in one patient by the evidence that a new nodule of hepatocellular carcinoma recurrence was not recognized by T cells obtained at the time of RFA. In conclusion, RFA treatment generates the local conditions for activating the tumorspecific T-cell response. Although this effect is not sufficient for controlling hepatocellular carcinoma, it may represent the basis for the development of an adjuvant immunotherapy in patients undergoing RFA for primary and secondary liver
SUMMARYRecovery of total T cell numbers after in vivo T-cell depletion in humans is accompanied by complex perturbation within the CD8 + subset. We aimed to elucidate the reconstitution compatible with a thymus-dependent regenerative pathway since their recovery was slow and time-dependent, their values were tightly related to each other, and their reconstitution patterns were inversely related to age. By analysing non-naïve T cells, a striking diversion between putative memory T cells and CD28 x T cells was found. These latter increased early well beyond normal values, thus playing a pivotal role in total T-cell homeostasis, and contributed to reduce the CD4 : CD8 ratio. In contrast, putative memory T cells returned to values not significantly different from those seen in patients at diagnosis, indicating that this compartment may recover after HD-ChT. At 3-5 years after treatment, naïve T cells persisted at low levels, with expansion of CD28 x T cells, suggesting that such alterations may extend further. These findings indicate that CD28 x T cells were responsible for 'blind' T-cell homeostasis, but support the notion that memory and naïve T cells are regulated separately. Given their distinct dynamics, quantitative evaluation of T-cell pools in patients undergoing chemotherapy should take into account separate analysis of naïve, memory and CD28x T cells.
Tissue samples from 57 patients with neuroepithelial tumors (25 glioblastomas, 18 anaplastic astrocytomas, and 14 astrocytomas) were analyzed in order to evaluate the presence of estrogen, progesterone, glucocorticoid, and androgen receptors. Glucocorticoid- and androgen-specific binding proteins were present in 38.6% and 21.6% of the cases, respectively. Only a few tumors showed estrogen or progesterone receptors. A correlation was found between grade of anaplasia, patient's sex and age, and presence of glucocorticoid and androgen receptors. The biological role of these two receptors was investigated in 10 primary cell cultures derived from neuroepithelial tumors. For this purpose, dexamethasone and testosterone were added to culture medium at different concentrations (from 50 to 0.016 micrograms/ml). A significant stimulation of the cell growth was observed in four of five glucocorticoid receptor-positive cultures when dexamethasone in doses ranging from 2 to 0.016 microgram/ml was added to the culture. No modulation of the growth was observed in glucocorticoid receptor-negative cultures at the same doses. Higher dexamethasone doses induced a significant decrease of the growth index independently from the glucocorticoid receptor status. All of the cultures tested for testosterone activity were negative for androgen receptors. This hormone induced an inhibition of the growth index at doses ranging from 50 to 0.4 micrograms/ml. The data suggest that neuroepithelial tumors contain specific glucocorticoid and androgen binding proteins. Glucocorticoid receptors modulate the growth of cultured neuroepithelial tumors in the presence of different concentrations of dexamethasone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.