Molecular barcoding has provided means to link genotype to phenotype, to individuate cells in single-cell analyses, to enable the tracking of evolving lineages, and to facilitate the analysis of complex mixtures containing phenotypically distinct lineages.To date, all existing approaches enable retrospective associations to be made between characteristics and the lineage harbouring them, but provide no path toward isolating or manipulating those lineages within the complex mixture. Here, we describe a strategy for creating functionalized barcodes that enable straightforward manipulation of lineages within complex populations of cells, either marking and retrieval of selected lineages, or modification of their phenotype within the population, including their elimination. These "SmartCodes" rely on a simple CRISPR-based, molecular barcode reader that can switch measurable, or selectable markers, on or off in a binary fashion. While this approach could have broad impact, we envision initial approaches to the study of tumour heterogeneity, focused on issues of tumour progression, metastasis, and drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.