Avermectin and its analogs are major commercial antiparasitic agents in the fields of animal health, agriculture, and human infections. Previously, comparative transcriptome analysis between the low-producer S. avermitilis ATCC31267 and the high-producer S. avermitilis ATCC31780 using a S. avermitilis whole genome chip revealed that 50 genes were overexpressed at least twofold higher in S. avermitilis ATCC31780. To verify the biological significance of some of the transcriptomics-guided targets, five putative regulatory genes were individually cloned under the strong-andconstitutive promoter of the Streptomyces expression vector pSE34, followed by the transformation into the lowproducer S. avermitilis ATCC31267. Among the putative genes tested, three regulatory genes including SAV213, SAV3818, and SAV4023 exhibited stimulatory effects on avermectin production in S. avermitilis ATCC31267. Moreover, overexpression of SAV3818 also stimulated actinorhodin production in both S. coelicolor M145 and S. lividans TK21, implying that the SAV3818, a putative TetR-family transcriptional regulator, could be a global upregulator acting in antibiotic production in Streptomyces species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.