ATP is universally conserved as the principal energy currency in cells, driving metabolism through phosphorylation and condensation reactions. Such deep conservation suggests that ATP arose at an early stage of biochemical evolution. Yet purine synthesis requires 6 phosphorylation steps linked to ATP hydrolysis. This autocatalytic requirement for ATP to synthesize ATP implies the need for an earlier prebiotic ATP equivalent, which could drive protometabolism before purine synthesis. Why this early phosphorylating agent was replaced, and specifically with ATP rather than other nucleoside triphosphates, remains a mystery. Here, we show that the deep conservation of ATP might reflect its prebiotic chemistry in relation to another universally conserved intermediate, acetyl phosphate (AcP), which bridges between thioester and phosphate metabolism by linking acetyl CoA to the substrate-level phosphorylation of ADP. We confirm earlier results showing that AcP can phosphorylate ADP to ATP at nearly 20% yield in water in the presence of Fe3+ ions. We then show that Fe3+ and AcP are surprisingly favoured. A wide range of prebiotically relevant ions and minerals failed to catalyse ADP phosphorylation. From a panel of prebiotic phosphorylating agents, only AcP, and to a lesser extent carbamoyl phosphate, showed any significant phosphorylating potential. Critically, AcP did not phosphorylate any other nucleoside diphosphate. We use these data, reaction kinetics, and molecular dynamic simulations to infer a possible mechanism. Our findings might suggest that the reason ATP is universally conserved across life is that its formation is chemically favoured in aqueous solution under mild prebiotic conditions.
ATP is universally conserved as the principal energy currency in cells, driving metabolism through phosphorylation and condensation reactions. Such deep conservation suggests that ATP arose at an early stage of biochemical evolution. Yet purine synthesis requires six phosphorylation steps linked to ATP hydrolysis. This autocatalytic requirement for ATP to synthesize ATP implies the need for an earlier prebiotic ATP-equivalent, which could drive protometabolism before purine synthesis. Why this early phosphorylating agent was replaced, and specifically with ATP rather than other nucleotide triphosphates, remains a mystery. Here we show that the deep conservation of ATP reflects its prebiotic chemistry in relation to another universally conserved intermediate, acetyl phosphate, which bridges between thioester and phosphate metabolism by linking acetyl CoA to the substrate-level phosphorylation of ADP. We confirm earlier results showing that acetyl phosphate can phosphorylate ADP to ATP at nearly 20 % yield in water in the presence of Fe3+ ions. We then show that Fe3+ and acetyl phosphate are surprisingly favoured: a panel of other prebiotically relevant ions and minerals did not catalyze ADP phosphorylation; nor did a number of other potentially prebiotic phosphorylating agents. Only carbamoyl phosphate showed some modest phosphorylating activity. Critically, we show that acetyl phosphate does not phosphorylate other nucleotide diphosphates or free pyrophosphate in water. The phosphorylation of ADP monomers seems to be favoured by the interaction between the N6 amino group on the adenine ring with Fe3+ coupled to acetyl phosphate. Our findings suggest that the reason ATP is universally conserved across life is that its formation is chemically favoured in aqueous solution under mild prebiotic conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.