Pore modulation via hydrothermal carbonization (HTC) needs investigation due to its crucial effect on surface that influences its multirole utilization of such ultraporous sorbents in applications of energy storage- hydrogen and capacitive- as well as for pollutant abatement- carbon capture and dye removal. Hence, loblolly pine was hydrothermally carbonized followed by KOH activation to synthesize superactivated hydrochars (SAH). The resulting SAHs had specific surface area (SSA) 1462–1703 m2/g, total pore (TPV) and micropore volume (MPV) of 0.62–0.78 cm3/g and 0.33–0.49 cm3/g, respectively. The SAHs exhibit excellent multifunctional performance with remarkably high atmospheric CO2 capture of 145.2 mg/g and high pressure cryogenic H2 storage of 54.9 mg/g. The fabricated supercapacitor displayed substantial specific capacitance value of maximum 47.2 Fg−1 at 1 A g−1 in 6 M KOH and highest MB dye removal of 719.4 mg/g. Higher HTC temperature resulted in increased surface porosity as higher SSA, TPV benefitted H2 storage and MB dye removal while superior MPV favored CO2 capture. Moderate HTC temperature ensured higher mesopore-to-macropore volume ratio favoring electrochemical performance. Isotherm modelling of the adsorbates was compared using models: Langmuir, Freundlich, Langmuir- Freundlich and Temkin.
Hydrothermal carbonization (HTC) is a prominent thermochemical technology that can convert high-moisture waste into a valuable product (called hydrochar) at a relatively mild treatment condition (180–260 °C and 2–10 MPa). With rapidly growing research on HTC and hydrochar in recent years, review articles addressing the current and future direction of this research are scarce. Hence, this article aims to review various emerging applications of hydrochars, e.g., from solid fuel to soil amendment, from electron storage to hydrogen storage, from dye adsorption, toxin adsorption, heavy metal adsorption to nutrient recovery, and from carbon capture to carbon sequestration, etc. This article further provides an insight in the hydrochar’s working mechanism for various applications and how the applications can be improved through chemical modification of the hydrochar. Finally, new perspectives with appropriate recommendations have been made to further unveil potential applications and its improvement through hydrochar and its modified version.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.