Makanan merupakan bagian penting bagi manusia baik sebagai kebutuhan primer maupun sebagai bagian dari gaya hidup seseorang. Tempat makan yang semakin banyak dan tawaran makanan yang beragam, membuat seseorang memiliki lebih banyak pilihan akan tempat makan yang dapat dikunjungi. Dengan dibantu oleh teknologi, sekarang seseorang bisa mencari rekomendasi dengan menggunakan algoritma sistem rekomendasi. Saat ini ada tiga algoritma sistem rekomendasi yang populer yaitu Content Based Filtering (CBF), Collaborative Filtering (CF) dan metode hybrid. Metode CF merekomendasikan sebuah item kepada pengguna dengan memprediksi preferensi dari pengguna aktif terhadap sejumlah item berdasarkan preferensi dari pengguna atau item lain yang mirip. Ada dua jenis metode dalam CF yaitu User Based CF dan Item Based CF. Terdapat sebuah metode baru yang dikembangkan dari metode User Based CF, metode ini adalah Typicality Based CF. Typicality Based CF (TyCo) memiliki kelebihan yang tidak dimiliki metode CF lainnya dapat memberikan prediksi yang akurat walau data terbatas, dapat melakukan clustering tanpa algoritma tambahan dan dapat mengatasi masalah cold-start yang biasa dialami metode CF. Berdasarkan pengujian yang telah dilakukan diketahui bahwa aplikasi ini memiliki nilai rata-rata Mean Absolute Error (MAE) sebesar 1.366 yang disebabkan karena kurangnya data training.
2) ABSTRAK Banyak ibu rumah tangga yang kebingungan untuk menentukan masakan apa yang akan mereka masak sehingga bahan makanan yang mereka miliki menjadi rusak akibat tidak kunjung dimasak. Sebagian besar ibu rumah tangga mendapatkan ide resep dari website resep karena mudah untuk diakses dan memiliki resep yang cukup lengkap, namun kelemahannya kebanyakan dari website resep tidak memiliki fitur untuk pencarian resep berdasarkan bahan-bahan yang dimiliki. Aplikasi telepon genggam dipilih untuk memecahkan masalah tersebut. Pada penelitian ini, penulis akan membuat rancang bangun sistem rekomendasi resep masakan berdasarkan bahan baku dengan menggunakan algoritma penyaringan berbasis konten (CBFA). Algoritma ini merekomendasikan resep yang memiliki kesamaan dengan bahan makanan yang dimasukkan oleh pengguna. Aplikasi dibuat menggunakan file PHP untuk memproses data resep, seperti query data, mengecek data yang sama, menentukan weight serta menghitung dan mengurutkan resep menurut CBFA. Hasil dari pengujian menunjukkan bahwa rekomendasi resep sudah sesuai dengan kekuatan 71%.
Bahasa Isyarat adalah bahasa untuk orang - orang yang memiliki kesulitan mendengar maupun bicara. Tetapi bahasa isyarat bukanlah bahasa yang banyak digemari oleh masyarakat, sehingga orang yang memiliki disabilitas tersebut akan semakin kesulitan. Pada jurnal ini akan menjelaskan mengenai klasifikasi bahasa isyarat Amerika dengan menggunakan Convolutional Neural Network (CNN). Pada penelitian ini akan dilakukan beberapa penelitian menggunakan parameter berbeda seperti pada preprocessing, penelitian akan dilakukan dengan melihat parameter horizontal flip. Selanjutnya penelitian juga dilakukan dengan melihat epoch. Penelitian ini dilakukan untuk memantau akurasi dan akurasi validasi. Model yang dibuat pada penelitian ini nilai akurasi yang lebih tinggi saat memprediksi huruf v, dan n. Hasil nilai akurasi dari penelitian ini adalah 82.1%Sign Language is a language for people who have hearing and speech difficulties. But sign language is not a language that is favored by many people, so people with disabilities will find it increasingly difficult. This journal will explain the classification of American sign language using the Convolutional Neural Network (CNN). In this study, several studies will be carried out using different parameters such as in preprocessing, research will be carried out by looking at the horizontal flip parameter. Furthermore, research was also carried out by looking at the epoch. This study was conducted to monitor the accuracy and accuracy of the validation. The model made in this study has a higher accuracy value when predicting the letters v, and n. The result of the accuracy value of this study is 82.1%
Pelatihan workshop yang dilakukan oleh Fakultas Teknologi Informasi Program Studi Informatika Universitas Ciputra bertujuan untuk memperluas wawasan para fasilitator Yayasan Kaki Dian Emas (YKDE) dalam literasi digital. YKDE dipilih berdasarkan dari interview melalui WhatsApp messenger maupun menelpon langsung. Hal karena pelatihan ini dilakukan pada masa pandemic Covid-19. Pelatihan ini diperuntukkan untuk fasilitator YKDE yang tersebar di seluruh Indonesia. Kebutuhan media untuk berbagai cerita atau pengalaman menjadi hal yang penting. Melalui kegiatan ini, para fasilitator menjadi lebih terbuka wawasannya untuk menggunakan media website online. Setelah mengikuti kegiatan tersebut, mereka bisa langsung menerapkan dan membuat website untuk kepentingan berbagai informasi sehingga fasilitator di seluruh Indonesia bisa saling berbagi informasi secara real time.
To end the COVID-19 pandemics, the government attempted to accelerate the vaccination through various programs and collaboration. Unfortunately, the number is still relatively small compared to the number of populations in Indonesia. There are some reasons attributed to this challenge, one of them being the reluctance of citizens to accept the COVID-19 vaccine due to various factors. Knowing this factor to increase public compliance, the vaccination program can be speed-up. Unfortunately, traditionally acquiring the knowledge related to COVID-19 vaccine rejection can be challenging. One of the ways to capture the knowledge is by conducting a survey or interview related to COVID-19 vaccine acceptance. This method can be inefficient in terms of cost and resources. To address those problem, we propose a novel method for analyzing the topics related to the COVID-19 Indonesians’ opinions on Twitter by implementing topic modeling algorithm called Latent Dirichlet Allocation. We gathered more than 22000 tweets related to the COVID-19 vaccine. By applying the algorithm to the collected dataset, we can capture the what is general opinion and topic when people discuss about COVID-19 vaccine. The result was validated using the labeled dataset that have been gathered in the previous research. Once we have the important term, the strategy based on can be determined by the medical professional who are responsible to administer the COVID-19 vaccine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.