Malaria cases caused by the zoonotic parasite Plasmodium knowlesi are being increasingly reported throughout Southeast Asia and in travelers returning from the region. To test for evidence of signatures of selection or unusual population structure in this parasite, we surveyed genome sequence diversity in 48 clinical isolates recently sampled from Malaysian Borneo and in five lines maintained in laboratory rhesus macaques after isolation in the 1960s from Peninsular Malaysia and the Philippines. Overall genomewide nucleotide diversity (π = 6.03 × 10 −3) was much higher than has been seen in worldwide samples of either of the major endemic malaria parasite species Plasmodium falciparum and Plasmodium vivax. A remarkable substructure is revealed within P. knowlesi, consisting of two major sympatric clusters of the clinical isolates and a third cluster comprising the laboratory isolates. There was deep differentiation between the two clusters of clinical isolates [mean genomewide fixation index (F ST ) = 0.21, with 9,293 SNPs having fixed differences of F ST = 1.0]. This differentiation showed marked heterogeneity across the genome, with mean F ST values of different chromosomes ranging from 0.08 to 0.34 and with further significant variation across regions within several chromosomes. Analysis of the largest cluster (cluster 1, 38 isolates) indicated long-term population growth, with negatively skewed allele frequency distributions (genomewide average Tajima's D = −1.35). Against this background there was evidence of balancing selection on particular genes, including the circumsporozoite protein (csp) gene, which had the top Tajima's D value (1.57), and scans of haplotype homozygosity implicate several genomic regions as being under recent positive selection.population genomics | Plasmodium diversity | reproductive isolation | zoonosis | adaptation
The macaque malaria parasite Plasmodium knowlesi has recently emerged as an important zoonosis in Southeast Asia. Infections are typically mild but can cause severe disease, achieving parasite densities similar to fatal Plasmodium falciparum infections. We show that a primate-adapted P. knowlesi parasite proliferates poorly in human blood due to a strong preference for young red blood cells. We establish a continuous in vitro culture system by using human blood enriched for young cells. Mathematical modeling predicts that parasite adaptation for invasion of older red blood cells is a likely mechanism leading to high parasite densities in clinical infections. Consistent with this model, we find that P. knowlesi can adapt to invade a wider age range of red blood cells, resulting in proliferation in normal human blood. Such cellular niche expansion may increase pathogenesis in humans and will be a key feature to monitor as P. knowlesi emerges in human populations.
chloroquine resistance has been documented in nearly every region where this malaria-causing parasite is endemic. Unfortunately, resistance surveillance and drug discovery are challenging due to the low parasitemias of patient isolates and poor parasite survival through maturation that reduce the sensitivity and scalability of current antimalarial assays. Using cryopreserved patient isolates from Brazil and fresh patient isolates from India, we established a robust enrichment method for parasites. We next performed a medium screen for formulations that enhance survival. Finally, we optimized an isotopic metabolic labeling assay for measuring maturation and its sensitivity to antimalarials. A KCl Percoll density gradient enrichment method increased parasitemias from small-volume isolates by an average of>40-fold. The use of Iscove's modified Dulbecco's medium for culture approximately doubled the parasite survival through maturation. Coupling these with [H]hypoxanthine metabolic labeling permitted sensitive and robust measurements of parasite maturation, which was used to measure the sensitivities of Brazilian isolates to chloroquine and several novel antimalarials. These techniques can be applied to rapidly and robustly assess the isolate sensitivities to antimalarials for resistance surveillance and drug discovery.
Plasmodium knowlesi is a zoonotic parasite transmitted from macaques causing malaria in humans in Southeast Asia. Plasmodium parasites bind to red blood cell (RBC) surface receptors, many of which are sialylated. While macaques synthesize the sialic acid variant N-glycolylneuraminic acid (Neu5Gc), humans cannot because of a mutation in the enzyme CMAH that converts N-acetylneuraminic acid (Neu5Ac) to Neu5Gc. Here we reconstitute CMAH in human RBCs for the reintroduction of Neu5Gc, which results in enhancement of P. knowlesi invasion. We show that two P. knowlesi invasion ligands, PkDBPβ and PkDBPγ, bind specifically to Neu5Gc-containing receptors. A human-adapted P. knowlesi line invades human RBCs independently of Neu5Gc, with duplication of the sialic acid-independent invasion ligand, PkDBPα and loss of PkDBPγ. Our results suggest that absence of Neu5Gc on human RBCs limits P. knowlesi invasion, but that parasites may evolve to invade human RBCs through the use of sialic acid-independent pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.