Cardiac magnetic resonance (CMR) is an essential clinical tool for the assessment of cardiovascular disease. Deep learning (DL) has recently revolutionized the field through image reconstruction techniques that allow unprecedented data undersampling rates. These fast acquisitions have the potential to considerably impact the diagnosis and treatment of cardiovascular disease. Herein, we provide a comprehensive review of DL-based reconstruction methods for CMR. We place special emphasis on state-of-the-art unrolled networks, which are heavily based on a conventional image reconstruction framework. We review the main DL-based methods and connect them to the relevant conventional reconstruction theory. Next, we review several methods developed to tackle specific challenges that arise from the characteristics of CMR data. Then, we focus on DL-based methods developed for specific CMR applications, including flow imaging, late gadolinium enhancement, and quantitative tissue characterization. Finally, we discuss the pitfalls and future outlook of DL-based reconstructions in CMR, focusing on the robustness, interpretability, clinical deployment, and potential for new methods.
Purpose: Deep learning (DL) based reconstruction using unrolled neural networks has shown great potential in accelerating MRI. However, one of the major drawbacks is the loss of high-frequency details and textures in the output. The purpose of the study is to propose a novel refinement method that uses null-space kernel to refine k-space and improve blurred image details and textures.
Methods:The proposed method constrains the output of the DL to comply to the linear neighborhood relationship calibrated in the auto-calibration lines.To demonstrate efficacy, we tested our refinement method on the DL reconstruction under a variety of conditions (i.e., dataset, unrolled neural networks, and under-sampling scheme). Specifically, the method was tested on three large-scale public datasets (knee and brain) from fastMRI's multi-coil track.
Results:The proposed scheme visually reduces the structural error in the k-space domain, enhance the homogeneity of the k-space intensity. Consequently, reconstructed image shows sharper images with enhanced details and textures. The proposed method is also successful in improving high-frequency image details (SSIM, GMSD) without sacrificing overall image error (PSNR). Conclusion: Our findings imply that refining DL output using the proposed method may generally improve DL reconstruction as tested with various large-scale dataset and networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.